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Preface

Since the first edition of this book was published in 2004, two areas of forest 
measurement have advanced considerably. Concerns about global warming and 
recognition that forests remove the greenhouse gas, carbon dioxide from the atmos-
phere and sequester it have led to a flourishing of research on the measurement  
of forest biomass. Also, substantial technological developments have been made 
with instruments capable of measuring trees and forests remotely, at scales from 
individual trees on the ground to large scale images of forests from satellites. 
Whilst neither of these developments alters the principles of tree and forest measure-
ment fundamentally, both offer new opportunities to take better and/or more cost-
effective measurements of forests to describe better their role in the world. New 
discussion of both these areas has been added to this edition.

The aim of the book remains to present an introduction to the practice and techniques 
of tree and forest measurement. It should serve the forestry student adequately in 
the undergraduate years and be useful as a guide in his or her subsequent professional 
life. It should allow practising professional foresters to keep themselves abreast of 
new developments. It aims also to be accessible to landholders and farmers who 
own and manage forests on their properties, but have no formal forestry education; 
they may be able to take basic forest measurements and understand the principles of 
more advanced measurements, which professionals take for them.

I have continued to discuss the biological principles which lead to many of the 
measurements which are made in forests. I believe this will help readers appreciate 
better why emphasis is placed on the measurement of particular things in forests.

Substantial portions of the text have been little altered. However, I have been using 
the book with my undergraduate forestry students and have made some modifica-
tions, where my teaching experience suggests material might be better presented.

I am indebted to Prof. H. Wiant for valuable discussion about the new appro-
aches to 3P sampling, as described in Chap. 10. Prof. N. Coops kindly reviewed 
Chap. 13.

Australia P.W. West
January 2009
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Chapter 1
Introduction

1.1 This Book

The measurement of trees and forests is fundamental to the practice of forestry and 
forest science throughout the world. Measurements are used to understand how 
forests grow and develop, to determine how much they contain of the products man 
wants from them and to ensure that they are managed appropriately.

This book introduces the techniques of tree and forest measurement (or mensu-
ration as it is called in forestry). It covers little more than what might be taught in 
one semester of an undergraduate forestry course. It should be useful for students 
and practising foresters as well as for private landholders, who own forest and wish 
either to measure it or understand what professionals are doing when they measure 
it for them. The book is designed also to assist scientists, from other than forestry 
disciplines, who work in forests and need to measure them, although their interests 
are not necessarily in the trees themselves. It should assist them to take measure-
ments which are consistent with, and comparable to, those which forest scientists 
have accumulated over many years.

Many of the things which foresters need to know about trees or forests are 
difficult to measure directly. For example, it is not easy to determine the amount 
of wood in the stem of a tree standing in a forest, simply because the tree is so 
tall and large. To deal with this, techniques have been developed to estimate those 
difficult things from simple measurements, which can be taken from the ground. 
Much of this book is concerned with describing those techniques and how they 
are applied. However, it does not discuss in any detail how forestry scientists go 
about developing those techniques. Students wishing to know more about that 
topic will need to consult more advanced texts on forest measurement (e.g. Philip 
1994; Avery and Burkhart 2002; Husch et al. 2003; van Laar and Akça 2007) and 
the scientific literature.

It is impossible to teach forest measurement properly without a practical com-
ponent to the course, under the guidance of an experienced teacher. No book can 
substitute for that, so the reader of this book should expect only to be exposed to 
the principles of the discipline, rather than to become immediately competent in 
its practice.

P.W. West, Tree and Forest Measurement, 2nd edition, 1
DOI: 10.1007/978-3-540-95966-3_1, © Springer-Verlag Berlin Heidelberg 2009 
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Some terms used will be unfamiliar and a glossary has been included as 
Appendix A. Terms in the glossary are shown in bold type when they are first 
encountered in the text.

The metric system of weights and measures has been used throughout. To many 
North American readers in particular, this system will be unfamiliar and to them I 
apologise. I can only say with what relief, as a young forester in Australia in the 
1970s, I welcomed the introduction of the metric system and could leave behind the 
horrors of the imperial system! A table of metric-imperial conversion factors has 
been included as Appendix B. Younger readers, who have grown up with the metric 
system, will find there also some of the relationships between units in the imperial 
system; they can relish the realisation that they have not had to learn by heart such 
arcane facts as that there are 4,840 square yards in an acre.

There is little that can be done in forest measurement without using some 
mathematics. This book is designed so that a knowledge of no more than senior 
secondary school level mathematics is required; much will still be understood 
with a lower level of mathematical ability. There are many advanced techniques 
of forest measurement which require much higher level mathematics; those are 
barely alluded to and certainly no detail is given.

Letters of the Greek alphabet are used commonly in mathematical formulae. A 
copy of the alphabet is included as Appendix C, so that readers will be able to give 
names to the Greek letters as they are encountered. Many trigonometric concepts will 
be encountered also. The basics of trigonometry are summarised in Appendix D.

1.2 What Measurements are Considered?

It is impossible for any book on forest measurement to cover the whole range of 
things which might be measured in forests. The primary focus of this book is on 
measuring the trees themselves.

A principal concern is with measurement of the amount of wood trees contain 
in their stems and the sizes of the logs that can be cut from them. It is this wood 
that is converted into timber products (lumber as it is called in America), for build-
ing and many other purposes, or that is to be used for paper-making. Wood, in the 
form of logs cut from tree stems, remains a valuable commercial product of forests; 
traditionally, courses on forest measurement have concentrated on how it is 
measured.

A second concern of this book is with measurement of the weight of various 
parts of trees, their leaves, branches, stems and roots. There are two reasons for this. 
Around the world, man uses about 2 billion dry tonnes of wood annually. Just over 
half of this is firewood, largely for domestic use, especially in Asia and Africa. That 
is to say, firewood is by far the biggest single use of wood by man. Firewood can 
be obtained from stem and branch wood of trees and, sometimes also, from large, 
woody roots and is usually measured by its weight.
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The second reason for measuring tree weight is that about one quarter of the 
fresh weight of a tree (that is the weight of the wet tissue, cut directly from a living 
tree) consists of the chemical element carbon. Of recent times, there has been great 
concern around the world about global warming. This has been attributed to the 
release into the atmosphere of greenhouse gases from burning fossil fuels, such as 
coal and oil, to produce energy for human use. Carbon dioxide is one such gas. 
Plants in general, not just trees, take in carbon dioxide through their leaves and 
convert it chemically to sugar; they then use the sugar as food, for their growth and 
various life functions. This process of sugar production is known as photosynthesis. 
It requires energy from sunlight and releases oxygen back into the atmosphere as a 
waste product: it is this ‘waste’ product of photosynthesis which we animals 
breathe. Because plants remove carbon dioxide from the atmosphere and store it in 
their tissues (albeit stored in the form of other carbon containing chemical com-
pounds), plants are now seen as tools in attempts to reduce carbon dioxide levels in 
the atmosphere. Thus, measurement of the amount of carbon, which trees and for-
ests around the world can store, has assumed great importance over recent years.

There are of course many things other than tree stem wood volumes and tree 
weights which might be measured in forests. Information might be needed about 
the plants and other animals that live in forests, the soils on which they grow or the 
streams and rivers which run through them. These are important to understanding 
many of the other values that forests offer, in matters such as conservation, recrea-
tion, the supply of clean water or the rehabilitation of degraded land, forest values 
which are being appreciated more and more today. However, their measurement 
and valuation are properly the subject of other books.

1.3 Scale of Measurement

This book is concerned with forest measurement at several scales from individual 
trees, to stands of trees (a stand is a more or less homogeneous group of trees in a 
forest in which an observer might stand and look about him or her) and finally to 
large forest areas. The book is structured to consider measurements at these succes-
sively larger scales.

Individual trees occupy only a few square metres of land, whilst whole forests 
may cover hundreds or thousands of hectares. Thus, the measurements which can 
be taken at the smallest of those scales are likely to be much more detailed than 
those taken over larger areas. Much of the measurement of forests at larger scales 
is concerned with making measurements at a small scale, then using mathematical 
techniques to bring those measurements up to a large scale. Much of the content of 
the book is concerned with those techniques of scaling up.

Perhaps surprisingly, it is perfectly possible to take tree measurements using 
very simple equipment, like hand held tapes. These simple devices have been the 
mainstay of forest measurement over the last century or so. However, their use is 
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labour intensive and requires that field measurement crews travel around the forest 
area being considered and take their tree measurements directly in the forest.

There is now an increasing desire to use far more sophisticated equipment in 
forest measurement. Of course, a computer is used generally to assist both in stor-
ing the data collected from the forest and to do the arithmetical computations 
needed to convert those raw data into useful information about the forest. But 
highly sophisticated measuring devices, ranging from digital cameras used on the 
ground, to satellite images of the forest made from space, are now being adapted 
for use in measuring trees and forests. Not only is this equipment likely to be labour 
saving, but it will allow much larger areas of forest to be measured in far more 
detail than was possible in the past. The final chapter of this book is devoted to a 
description of some of this equipment and its use from small- to broad-scale meas-
urement of trees and forests.



Chapter 2
Measurements

2.1 Measuring Things

Measurement of things is a fundamental part of any scientifically based discipline. 
Some things are simple to measure, like the length of a piece of string or the time 
taken by a pedestrian to cross the road. Other things are very difficult to measure, 
like the size of an atom or the distance to Jupiter. Some things cannot be measured 
directly at all, like the volume of wood that might be harvested from a large forest 
area of thousands of hectares; there are simply too many trees in such a forest to 
measure them all and, as will be seen in Chaps. 5 and 6, it is quite difficult to meas-
ure the harvestable wood volume in even just one tree.

When something is difficult to measure, or cannot be measured directly at all, 
methods of measurement are used to approximate or estimate it. These methods often 
involve measuring parts of the thing, parts which can be relatively easily measured. 
Then, more or less complicated mathematical procedures are used to convert the 
measurements of the parts to make an estimate of the size of the whole thing.

Indeed, this book is concerned both with how parts of things in forests are meas-
ured, simple parts like the circumference of the stem or the height of a tree, and 
how those simple measurements are used to estimate a more difficult thing, like the 
harvestable wood volume in its entire stem.

Whether a simple or very complex thing is being measured, there are three 
things about its measurement with which we should be concerned. These are the 
accuracy of the measurement, whether or not there is bias in it and what is its 
precision. The rest of this chapter will be concerned with these three issues, in the 
context of measurement of trees and forests.

2.2 Accuracy

Accuracy is defined formally as ‘the difference between a measurement or estimate 
of something and its true value’. In simple terms, it can be thought of as how closely 
one is able to measure or estimate something, given the measuring equipment or 

P.W. West, Tree and Forest Measurement, 2nd edition, 5
DOI: 10.1007/978-3-540-95966-3_2, © Springer-Verlag Berlin Heidelberg 2009
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estimation method available. Accuracy is expressed by saying that a measurement 
or estimate has been made to the nearest part of some unit of measurement, for 
example, to the nearest 1/10th of a metre, to the nearest hectare or to the nearest 
microsecond, depending on what type of thing is being measured.

Suppose it was desired to measure something quite simple, like the length of the 
side of a field, of which the true length was 100 m. There are a variety of methods 
which could be used to do that. The simplest might be to simply pace the distance 
out yourself, having calibrated your paces by measuring their length along a tape 
measure. However, a result from pacing would not be expected to be very accurate, 
because a person is unable to keep each of his or her paces exactly the same length. 
Pacing would probably give a result for the length of the side of the field some-
where in the range of about 95−105 m. That is, we could then say that measuring 
distances of around 100 m by pacing was accurate only to the nearest 5 m.

A second method might be to use a measuring tape. Such tapes are often 30−100 
m long, made of fibre-glass, or other material which is not likely to stretch, and are 
usually calibrated in 1 cm units. Some care is needed with their use; they must be 
laid carefully along the ground and pulled tight to ensure that dips, hollows and 
irregularities in the ground surface influence the result as little as possible. 
However, even taking all due care with a tape like this, it would probably give a 
result for the length of the side of the field somewhere in the range 99.9−100.1 m. 
That is, we would say the tape was accurate to the nearest 1/10th of a metre.

A third method might involve a modern laser distance measuring device, such 
as used today by professional surveyors. Lasers are becoming very important for 
many types of measurement, not only in forestry; their use in forestry is discussed 
further in Chaps. 4, 5 and 13.

Laser is an acronym for ‘Light Amplification by Stimulated Emission of 
Radiation’. Laser light involves an intense, narrow beam of light of a single colour, 
which can be directed very precisely. The distance from an instrument to a solid 
object is determined by measuring the time it takes a pulse of laser light to be 
reflected from the object back to the instrument. These instruments contain very 
accurate clocks, capable of measuring the extremely short periods of time involved, 
given that light travels at about 300 million metres/second. A laser distance measur-
ing device might be capable of measuring a distance of about 100 m with an accu-
racy at least to the nearest 1/1,000th of a metre, that is, to the nearest millimetre.

The size of the thing being measured will immediately set some criterion for the 
accuracy required of the measurement. If one wishes to measure the sizes of atoms, 
which are of the order of 1 angstrom unit (Å) in diameter (an angstrom unit is one 100 
millionth of a centimetre and was named after Anders Ångström, a Swedish physicist 
of the mid nineteenth century), complex laboratory equipment will be required, capa-
ble of taking measurements with an accuracy of fractions of an angstrom unit. If one 
wishes to measure the distance to Jupiter, which orbits the sun at an average distance 
of about 778 million km, a measurement method accurate to the nearest few tens of 
thousands of kilometres is probably what is required. However, the accuracy required 
ultimately of a measurement or estimate of something depends on the purpose for 
which the result is required. In turn, this will determine the sophistication of the equip-
ment or estimation method required to achieve the desired accuracy.

10.1007/_2
10.1007/_2
10.1007/_2
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Returning to the simple example of measurement of the length of the sides of a field, 
if it was desired to determine its area roughly, to work out how many bags of fertiliser 
were needed to cover it, the accuracy of measurement got from pacing out the sides 
would probably be adequate. On the other hand, if a professional surveyor wished to 
measure the field to establish the title to the property, a laser measuring device would 
probably be preferred to achieve the accuracy required by the legal system.

2.3 Bias

Bias is defined as ‘the difference between the average of a set of repeated measure-
ments or estimates of something and its true value’. In essence, if something is 
difficult to measure, it may not matter how many times we attempt to take the 
measurement, nor how many different types of measurement equipment we use, we 
may simply always get the wrong answer. By ‘the wrong answer’ is meant that the 
results of the many attempts at measurement will be consistently larger or smaller 
than the true value of whatever it is that is being measured. If this is the case, the 
measurement or estimation method is said to be biased.

By the same token, it would be said that the measurement or estimation method 
is unbiased if the average of the many measurement attempts differed negligibly 
from the true value. How small would the difference have to be to be considered 
negligible? Obviously, some limit is set by the accuracy of the measurement 
method; we simply cannot detect differences smaller than the accuracy. Apart from 
that, the degree of bias that will be considered acceptable will be determined 
entirely by the purposes for which the result of the measurement are to be used; this 
issue is discussed further in Sect. 2.5.

To illustrate what is meant by bias, consider the problems involved in measuring 
the weight of the fine roots of a tree. Fine roots are the small (less than about 2 mm 
diameter), live roots at the extremities of the root system of a tree. Biologically, 
they are extremely important, because they take in the water and nutrients from 
the soil that the tree needs to survive and grow. Because of their importance, forest 
scientists need to measure them. The most appropriate way devised so far to do so 
is to excavate them from the soil. Obviously, this is a major task, since they will be 
scattered throughout a large volume of soil, extending perhaps 2−3 m or more away 
from the stem of a large tree and to a depth of 1−2 m. As well, so small and numer-
ous are fine roots, it is very difficult to find all of them as one sorts laboriously 
through such a large volume of soil. Furthermore, in any patch of forest it is diffi-
cult to know if an excavated fine root belongs to the particular tree one is dealing 
with, or if it belongs to another, nearby tree or even to an understorey plant. So 
difficult are fine roots to find and measure, it is perhaps inevitable that that any 
attempt to do so is doomed to get the ‘wrong answer’, that is, to be a biased meas-
urement method. Most probably, the answer will be an under-estimate of the true 
amount, because it is so difficult to find all the fine roots. There are various other 
methods used to measure fine roots (Sect. 7.2.3), all of them probably subject to 
bias, because of the difficulties associated with their measurement.

10.1007/_2
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2.4 Precision

Precision is defined as ‘the variation in a set of repeated measurements or estimates 
of something’. The variation arises because of the limitations in the measurement 
or estimation technique, when it is used at different times and under varying cir-
cumstances, and limitations of the people taking the measurements.

Following the example in Sect. 2.3, if a number of different people set out to 
measure the weight of the fine roots of a tree, it is inevitable that each would get a 
somewhat different result. So difficult are fine roots to measure, that individuals 
will vary in how many they manage to find in a large, excavated soil volume.

Precision is measured by the amount of variation in the results of a repeated set 
of measurements of the same thing. The range of values in the set of estimates is 
one measure of precision. Another measure, called variance, is the measure used 
most commonly. Variance is a concept which derives from mathematical statis-
tics. It is fundamental to a wide range of mathematical techniques used in science; 
these techniques deal with the problems that variation between natural things 
causes us in understanding how nature works. Variance and its use as a measure of 
precision will be discussed more fully in Chap. 9.

Suppose the precision of a measurement technique is low, that is, a rather wide 
range of different results would be obtained when the technique is used by different 
people or at different times. If so, we would feel rather unsure about the extent to 
which we could rely on any one result we had obtained using the technique. In turn, 
we would not be very confident that we could draw worthwhile conclusions about 
whatever it was that was being measured. That is why precision is important in 
measurement. If it is high, we will feel confident that we can use the information 
to draw reliable conclusions. If it is low, we will feel much less confidence in our 
conclusions.

2.5 Bias, Precision and the Value of Measurements

It is important to understand how bias and precision interact. This can be illustrated 
through an analogy used in various texts (Shiver and Borders 1996; Avery and 
Burkhart 2002), where a marksman is shooting at a target. In effect, the marksman 
is attempting to use a bullet to ‘measure’ the position of the bullseye of the target.

Figure 2.1 describes the analogy. The best possible result for the marksman is 
illustrated in Fig. 2.1(a). The average position of all the shots is right on the bull-
seye; that is, the average of the repeated attempts to measure the position of the 
bullseye does not differ appreciably from its true position, so it can be said to 
have been an unbiased measurement technique. As well, because the shots cluster 
closely around the bullseye, it can be said they measure its position with a high 
degree of certainty and so they represent measurements made with a high degree 
of precision.

10.1007/_2
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In the case of Fig. 2.1(b), the shots still cluster closely around one point, so they 
represent measurements made with a high degree of precision. However, their aver-
age position is some distance from the bullseye, so they represent a measurement 
technique in which there is bias. In this analogy, the bias might have arisen because 
the ‘instrument’ being used (the gun) is not calibrated correctly, by having its sights 
set poorly. Or perhaps, unknown to the marksman, there was a wind blowing which 
pushed all the shots to the left.

Figures 2.1(c) and (d) both show cases where the marksman has produced a 
wide spread of shots, which represent measurements made with a low degree of 
precision. In Fig. 2.1(c), despite their wide spread, the average position of the shots 
is still right on the bullseye, so they represent measurements made without bias. 
This might happen to a marksman on a day when the wind varies unpredictably, so 
that his or her shots are spread. Figure 2.1(d) represents the worst possible result 
for the marksman. Not only are the shots widespread, but also their average posi-
tion is a long way from the bullseye. This might happen if the sights of the gun are 
not set correctly and if there are unpredictable wind variations.

The important question then is whether or not a biased or imprecise measure-
ment is still useful. Usually, it is better to have some measurement of something 
than no measure at all: what is difficult to judge is whether or not a biased but 
precise result (Fig. 2.1b) is more useful than an unbiased but imprecise result (Fig. 
2.1c). Even more difficult to judge is if a biased and imprecise result (Fig. 2.1d) is 

Fig. 2.1 Bullet holes in a target, as an analogy for bias and precision of measurements. (a) An 
unbiased, precise result, (b) a biased, precise result, (c) an unbiased, imprecise result and (d) a 
biased, imprecise result

a b

c d
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better than no result at all. There are really no rules available to make these deci-
sions. It becomes a matter of judgement for the person using the results to decide 
whether or not they are adequate for the purposes for which they are needed.

As discussion of various measurement techniques continues throughout this 
book, reference will be made to the accuracy, bias and precision involved with 
them.



Chapter 3
Stem Diameter

3.1 Basis of Diameter Measurement

The simplest, most common and, arguably, the most important thing measured on 
trees in forestry is the diameter of their stems. Amongst other things, tree stem 
diameter:

•	 Often	correlates closely with other things, which are more difficult to measure, 
like the wood volume in the stem of a tree or the weight (or biomass, as it is 
called) of the tree

•	 May	reflect	the	monetary	worth	of	the	tree,	given	that	larger	trees	produce	logs	
of larger sizes, from which more valuable timber can be cut and so which are 
more valuable commercially

•	 May	reflect	the	competitive	position	of	a	tree	in	a	stand	and,	hence,	how	well	it	
is likely to grow in relation to the other trees.

Stem diameter declines progressively from the base of the stem, as the tree 
tapers. So, a standard convention has been adopted in forestry to make a basic 
measurement of tree stem diameter at breast height. This is defined as being 1.3 
or 1.4-m vertically above ground from the base of the tree. The height used varies 
in different countries (and, in America, is actually defined in imperial units as 4 ft 
6 in); the difference is generally ignored when results from different countries are 
compared. If the tree is growing on sloping ground, breast height is measured from 
the highest ground level at the base of the tree. Loose litter and debris at the base 
of the tree should be brushed aside before making the measurement of breast 
height.	Of	course,	stem	diameters	may	be	measured	also	at	heights	along	the	stem	
other than breast height; reasons for doing so are discussed in Sect. 5.3.4.

If a tree is very young, it may not have grown tall enough to have reached breast 
height. If it is desired to measure its stem diameter, obviously it must be done at a 
lower height, at least until the tree is taller than breast height; commonly, heights 
of 0.1 or 0.3-m above ground are used in these circumstances. The need to do this 
is increasing in forestry, as some products are now being harvested from very 
young forests. For example, plantation forests are being grown for only 3−5 years 
to produce wood for bioenergy production (that is to fuel boilers or to be converted 

P.W. West, Tree and Forest Measurement, 2nd edition,  11
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by fermentation to ethanol for motor vehicle fuel). However, forestry has not yet 
adopted any particular convention as to the height to be used for stem diameter 
measurement of small trees.

The rest of this chapter discusses how stem diameters are measured and the dif-
ficulties encountered in doing so.

3.2 Stem Cross-Sectional Shape

By referring to diameter, it is being implied that stems are circular in cross-section. 
However, the first problem with measuring stem diameter is that tree stems are 
never exactly circular. Certainly they are approximately so, because the principal 
function of the stem is to act as a pole and support the crown (the leaves and 
branches of a tree) high in the air, so that the tree can dominate other vegetation that 
occurs on a site. Engineering theory suggests that a circular pole will be stronger 
than poles of other shapes; thus, it can be argued that evolution has favoured the 
development of tree stems of the most efficient shape to perform their function.

However, all stems have some irregularities in their cross-sectional shape, sim-
ply because trees are biological organisms and nature rarely provides theoretical 
perfection. Those irregularities are generally exaggerated at points where branches 
have protruded from the stem or where damage has occurred through things like 
fire, disease or insect attack. As well, most stems show some eccentricity in their 
shape, so that they are wider in one direction than another. This is most likely a 
response to wind; the longest axis of the eccentric shape will correspond to the 
prevailing wind direction and will give the stem more strength to resist those winds. 
In fact, the density of stem wood has also been found to be greater along the axis 
of the prevailing wind direction, an effect which also increases the strength of the 
stem	in	that	direction	(Robertson	1991).

Particularly in tropical forests, large trees may have extensive flutes or but-
tresses protruding from their bases (Fig. 3.1). These may extend to several metres 
above ground. Just like buttresses used in buildings, tree buttresses are believed to 
give additional structural support to the tree.

Apart from these common irregularities in the cross-sectional shape of tree 
stems, extraordinary variations in shape occur also. Generally, these are a result of 
unusual environmental circumstances, where trees lean against one another or 
some other solid object, grow on steep slopes or have odd branching. In his unusual 
and	entertaining	book,	Dr.	Claus	Mattheck	has	illustrated	some	of	the	extraordinary	
shapes	 which	 trees	 have	 been	 found	 adopting	 in	 nature	 (Mattheck	 1991).	 These	
unusual cases are sufficiently rare that they need not be of concern for normal for-
estry circumstances.

Given all this discussion, it is clear that that tree stems are generally not exactly 
circular in cross-section. This means that stem diameter will generally be a biased 
measurement of the true size of the stem. The effect of this bias, on things  
like determining the growth in cross-sectional area of tree stems from diameter 



measurements	made	at	different	ages,	has	been	studied	(Biging	and	Wensel	1988).	
However, universally in forestry and forest research, the effect of that bias is con-
sidered to be sufficiently small that it is ignored and tree stems are treated as being 
truly circular in cross-section.

3.3 Measuring Stem Diameter

The most common way to determine the diameter of a stem is to measure its girth 
with a simple tape measure, known as a diameter tape. Diameter tapes are made of 
steel or fibre-glass, for strength and to prevent stretching. They are calibrated in units 
of the mathematical constant pi (p), which is the ratio of the circumference of any 
circle to its diameter and has a value of approximately 3.142. That is, a unit shown as 
1 cm long on a diameter tape is 3.142-cm long; when the tape is wrapped around the 
girth of a tree, the corresponding diameter can be read directly from the tape.

To use a diameter tape correctly, it should be wrapped firmly around the stem, 
perpendicular to its axis. Any loose bark should be brushed gently off the stem 

Fig. 3.1 Buttressing on the lower stem of a large tree in subtropical rainforest in northern New 
South Wales, Australia. This stem is over 3-m wide at its base. The buttressing continues up the 
stem for more than 5 m (Photo−P.W. West)

3.3	 Measuring	Stem	Diameter	 13
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before making the measurement. Where a tree is to be measured repeatedly to 
determine its growth rate, say, at intervals of a year or so, paint or other marking 
material may be used to mark the point where the diameter is measured to ensure 
the same position is measured on each occasion.

Diameter tapes are usually calibrated at intervals of 0.1-cm diameter (that is, the 
calibration marks are 3.142-mm apart) and tree measurements are usually recorded 
to an accuracy of the nearest 0.1 cm (that is, to the nearest millimetre). Years of 
experience of forest scientists have shown that this accuracy is adequate generally 
for forestry purposes.

A second instrument used commonly to measure diameter is a caliper. Calipers 
are particularly useful when measuring trees of small diameter (say, less than about 
5 cm), when the stiffness of a diameter tape can make it difficult to wrap the tape 
around the stem. However, calipers are used also to measure trees of larger diam-
eter, the size of the calipers being chosen to suit the size of the trees being meas-
ured. Calipers are often quicker to use than diameter tapes. However, they measure 
stems only across one diameter of their cross-section, whereas a diameter tape 
measures the average diameter corresponding to the girth of the tree. To allow for 
this, it is usual when using calipers to take two diameter measurements, at right 
angles to each other. The square root of the product of the two diameters is then 
used as the measure of stem diameter; by calculating stem diameter this way, it is 
being allowed that the stem cross section may be shaped as an ellipse, rather than 
being circular.

Much	less	commonly	than	diameter	tapes	or	calipers,	the	other	instruments	are	
used to measure tree diameters, such as Biltmore sticks or Wheeler pentaprism. 
They	 are	 described	 in	 some	 other	 books	 on	 forest	 measurement	 (Philip	 1994;	
Avery	and	Burkhart	2002;	van	Laar	and	Akça	2007)	and	will	not	be	considered	
further here. There are available also optical instruments, with which stem diam-
eters can be measured high up on the tree stem. These will be discussed in more 
detail in Sect. 5.3.4.

3.4 Tree Irregularities

Where buttresses occur (Fig. 3.1), the stem is so irregular in shape that it is obvi-
ously quite impossible to define its diameter. To deal with this problem, measure-
ments of stem diameter are usually made at a height on the stem above which the 
effect of the buttressing has disappeared and where the stem has become approxi-
mately	circular	in	cross-section.	Of	course,	such	measurements	are	no	longer	com-
parable with measurements made at the world forestry standard height, that is, 
breast height.

When such measurements are made, they will still have local application for all 
the purposes that breast height diameters are used normally and which will be dis-
cussed in due course in this book. The height chosen for such measurements will 
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be determined for the forest concerned and could be as high as several metres. A 
ladder may be needed to reach the required height.

In normal forest circumstances, a much more common problem is a result of the 
lumps and bumps, which may occur anywhere along a tree stem. They are espe-
cially common where branches protrude and may persist for some years, even after 
the branch has died and dropped off. When such an irregularity occurs where a 
diameter measurement is to be made, two measurements are usually taken, at points 
equidistant above and below the point. The average of two measurements is then 
used as the measurement of stem diameter at the required point. It is left to the 
judgement of the measurer to assess if such an irregularity is sufficiently large to 
warrant measuring diameter in this fashion.

Also common in forests is the occurrence of trees with forks in the stem, beyond 
which the tree has grown with two or even more stems. There are many tree species 
also which have multiple stems arising from ground level. The convention used to 
deal with these cases is to treat the multiple stems as separate trees, whenever the 
fork occurs below breast height.

3.5 Bark Thickness

Forestry is concerned usually with the wood in tree stems, because that is the part 
of the tree which is sold most commonly. Bark may be sold also, perhaps as mulch-
ing material for gardens, or it can even be burnt as biofuel. However, it is generally 
a much less valuable product than wood, so it is usually the wood it is desired to 
measure.

Between different tree species, bark varies greatly in thickness and texture, from 
extremely rough to quite smooth. It can be several centimetres thick, so a measure-
ment of stem diameter made over the bark can be appreciably greater than the 
diameter of the wood below.

Bark thickness of standing trees can be measured with a bark gauge. This instru-
ment consists of a shaft with a sharp point, which is pushed through the bark until 
the resistance of the underlying wood is felt. The sleeve around the shaft is then 
shifted to the surface of the bark and the bark thickness read from the calibrated 
shaft. Some practice is needed to get a ‘feel’ for when the point of the gauge has 
reached the wood. Usually, at least two measurements, at right angles around the 
stem, would be made of bark thickness and their average used as the measure of 
bark thickness.

Measuring	bark	 thickness	can	be	quite	 tedious.	So,	wherever	possible,	meas-
urements of stem diameter over bark are preferred. As shall be seen below, over 
bark diameter measurements are quite adequate for many of the purposes for 
which stem diameter measurements are used in forestry. However, there are times 
when it is essential that under bark diameters be determined and so bark thickness 
must be measured.



Chapter 4
Tree Height

4.1 Basis of Height Measurement

The height of trees is important to forestry particularly because:

•	 The	length	of	the	stem	is	important	as	part	of	the	calculation	of	the	total	amount	
of wood contained within it

•	 The	height	of	the	tallest	trees	in	the	forest	is	the	basis	of	one	of	the	most	impor-
tant measures used in forestry to assess site productive capacity. This is a 
measure used to asses how rapidly trees will grow on a site; it will be discussed 
further in Sect. 8.8.

In forestry, tree height is defined as the vertical distance from ground level to the 
highest green point on the tree (which will be referred to here as the tip of the tree). 
It might seem odd that tree height is not defined in terms of stem length (since it is 
usually the wood-containing stem of the tree with which forestry is most con-
cerned) or as the height to the top of the stem itself. However, near the tips of trees 
of many species, it is difficult to define exactly what constitutes the stem, because 
of the proliferation of small branches there. Even if the main stem can be seen 
clearly near the tip, it is often very difficult to see exactly where it stops. This is 
particularly so when viewing, from the ground, a tall tree with a dense crown.

Whilst the highest green point of a tree is much easier to identify than its stem 
length, care must be taken to ensure that the tree is viewed from sufficiently far 
away so that its tip can be seen clearly. Even then, in dense forest it is often difficult 
to see the tip amongst the crowns of other trees; care must be taken to ensure the 
tip one can see is indeed that of the tree being measured.

Even if the tree is leaning, its height is still defined in forestry as the height to 
the highest green point, rather than by its stem length. Most trees, in most forest 
circumstances, stand just about vertically; if they do lean a little, perhaps in 
response to strong prevailing winds, the lean is usually no more than a few degrees. 
For general forestry purposes, it is sufficiently rare to encounter trees leaning suf-
ficiently that special consideration has to be given as to how their height should be 
measured; the lean would have to exceed about 7–8° before it would be sufficient 
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to affect appreciably the result of a tree height measurement. Heights of leaning 
trees will not be considered further here.

Direct, trigonometric and geometric methods are used to measure tree heights. 
Each of these will be discussed below.

4.2 Height by Direct Methods

Direct height measurement involves simply holding a vertical measuring pole 
directly alongside the tree stem. Devices with a telescoping set of pole segments 
can be purchased readily. These are able to measure tree heights to about 8 m.

Light-weight aluminium or fibre-glass poles of a constant length (1.5–2 m), 
which slot into each other at their ends, are available also. As many as necessary of 
these may be slotted together progressively and the whole lot raised until the tip of 
the tree is reached. The number of poles used is counted and any leftover length at 
the base of the tree is measured with a tape. These are effective to heights of about 
12–15 m, beyond which the poles become too heavy or unwieldy to hold.

When using these devices, care must be taken to ensure the pole is raised to 
coincide exactly with the tip of the tree. This requires a team of two to measure 
heights, one to hold the measuring pole and the other to sight when the tip of a tree 
is reached. In windy weather, swaying of the tree tops can make this sighting more 
difficult.

With careful sighting of the tree tip, these devices should allow height measure-
ments to an accuracy of about 0.1 m. For trees taller than about 12–15 m, it is 
necessary to use trigonometric or geometric methods, which are discussed below.

4.3 Height by Trigonometric Methods

Figure 4.1 illustrates the principle involved in measuring tree height by trigonomet-
ric methods. A vertical tree of height h

T
 = AC is standing on flat ground. An 

observer is standing a measured distance d = GC away from the tree and measures, 
at eye level O with some viewing device, the angles from the horizontal to the tip 
of the tree, a

T
, and to the base of the tree, a

B
. Angles measured above the horizontal 

should have a positive value, whilst those below the horizontal should be negative; 
in the case of Fig. 4.1, a

T
 is positive and a

B
 is negative.

Using straightforward geometry and trigonometry, the height of the tree can be 
calculated from these measurements as

 T T B
[tan( ) tan( )],= + -h d a a  (4.1)

where ‘tan’ is the trigonometric expression for the tangent of the angle. Appendix 
D gives some basic trigonometry and trigonometric functions.



As an example, suppose the observer was standing 21 m away from the tree and 
measured the angle to the tip as 48° and the angle to the base as −7°. Then, the 
height of the tree would be calculated as h

T
 =21 ´ [tan(48) + tan(7)] = 21 ´ [1.1106 

+ 0.1228] = 25.9 m. Scientific calculators and computer programs provide the 
required trigonometric functions.

In dense forest, it can often be difficult for the observer to see the tip of the tree. 
He or she needs to move around the tree and adjust the distance from which it is 
being viewed to make sure that the tip of the tree can be clearly seen. These prob-
lems are exacerbated if the wind is blowing the tips about. If the day is too windy, 
it simply becomes impractical to undertake height measurements.

A tape may be used to measure the distance from the observer to the centre of 
the base of the tree. The angles may be measured with a hand-held clinometer 
(readily available from forestry suppliers) or, more precisely, with a theodolite. 
Theodolites are far slower to use and would only be countenanced if a very precise 
height measurement was required. Also available are various optical/mechanical 
instruments (Haga altimeter, Suunto hypsometer, Blume-Leiss hypsometer, Abney 
level and Spiegel relaskop), which incorporate a clinometer. These devices have 
scales which are calibrated so that the observer can read the tree height directly 
from the scale without having to do the computations required by (4.1).

For routine tree height measurements, convenient electronic instruments are 
available today. These combine a clinometer with a distance measuring device. 
Some use the time of travel of sound waves to measure the distance, whilst the most 
recent use a laser. In both cases, a target is pushed into the stem of the tree to reflect 
back to the instrument the sound wave or laser light. Because the velocity of sound 
varies appreciably with air temperature, the instruments which use sound need to 
be calibrated regularly throughout the day as temperature changes. Once distance 

aB
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A
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O

Fig. 4.1 Principle of tree height measurement using trigonometric methods
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has been measured, the instrument is aimed at the base and tip of the tree and the 
inbuilt clinometer measures the required angles. The tree height is then calculated 
electronically by the device and displayed to the user.

Heights measured by trigonometric means are often reported to an accuracy of 
the nearest 0.1 m. However, given the difficulties involved in sighting to the tips of 
tall trees, this is probably optimistic. In the example given below (4.1), a measure-
ment error as small as +0.5° in the angle to the tip of the tree would result in a 
height estimate of 26.3 m, rather than 25.9 m as given in the example. In practice, 
an accuracy of no better than to the nearest 0.5 m might be a more realistic assess-
ment for tree height measurements.

Often the land surface on which the tree is positioned is sloping, rather than flat 
as in Fig. 4.1. To allow for this, the observer needs to measure also the angle of the 
slope, a

S
. This may be positive or negative, depending on whether the observer is 

positioned down- or up-slope, respectively, from the tree. The slope angle may be 
measured, with a clinometer, as the angle from the horizontal to a point on the stem 
at a height equal to the observer’s eye level. The distance from the tree to the 
observer is then measured along the slope. Say the slope distance is s, then the hori-
zontal distance to the base of the tree, d, can be calculated as

 S
cos( ),=d s a  (4.2)

where ‘cos’ is the trigonometric expression for the cosine of an angle. Suppose the 
slope angle was a down-slope of −10° and the slope distance measured was 21.3 m, 
then the horizontal distance to the tree would be calculated as d = 21.3 ´ cos (–10) 
= 21.3 ´ 0.9848 = 21.0 m. The angle to the tip and base of the tree would be meas-
ured as described before and this horizontal distance would then be used in (4.1) to 
calculate the tree height.

On steeply sloping ground and where the observer is standing down-slope of the 
tree, the angle measured to the base of the tree, a

B
, may be positive, rather than 

negative as in Fig. 4.1. This does not affect the computation of height in any way 
and (4.1) and (4.2) remain appropriate to calculate the height of the tree.

The sonic or laser measuring devices described above adjust automatically for 
ground slope by measuring the angle up or down to the reflector on the tree, which 
is always positioned at a standard height above ground.

4.4 Height by Geometric Methods

Figure 4.2 illustrates the principle involved in measuring tree height by geometric 
methods. A vertical tree of height h

T
 = AC, is standing on flat ground. A straight 

stick of known length l
T
 = BC is positioned vertically at the base of the tree; such 

a stick would commonly be about 3−5-m long. An observer is standing a conven-
ient distance away from the tree, with his or her eye at O. The observer holds a 



graduated ruler DF, positioned so that the line of sight OC to the base of the tree is 
coincident with the zero mark of the ruler. Without moving his or her head up or 
down, the observer reads from the ruler the distance l

R
 = FE, which coincides with 

the line of sight OB to the top of the stick against the tree. He or she reads also from 
the ruler the distance h

R
 = DF, which coincides with the line of sight OA to the tip 

of the tree. Using straightforward geometry, the height of the tree can then be cal-
culated from these measurements as

 T R T R( / ).h h l l=  (4.3)

As an example, suppose the length of the stick standing against the tree was 5.0 m 
and the observer measured h

R
 as 41.4 cm and l

R
 as 8.0 cm. Then, the height of the 

tree would be calculated as h
T
 = 5.0 ´ 41.4/8.0 = 25.9 m. Ground slope does not 

affect the geometry of this method.
A number of different devices are available which use this principle. Often, the 

ruler is graduated in such a way that the computations in (4.3) are done implicitly, 
so that the tree height can be read directly from their scale. These devices are 
known generally as hypsometers.

All the difficulties of measurement that apply with the trigonometric methods 
apply also with geometric methods. One advantage of geometric methods is that 
neither the distance from the observer to the tree nor ground slope need to be meas-
ured. A second advantage is that the equipment required is very simple (a stick of 
known length and a ruler only are required). Perhaps their disadvantage is that it is 
quite difficult physically for the observer to hold the ruler steady and, at the same 
time, keep in view all that needs to be sighted. However, with care, the accuracy of 
measurement of tree height using geometric methods should be about 0.5 m, the 
same as that with trigonometric methods.
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Fig. 4.2 Principle of tree height measurement using geometric methods
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Chapter 5
Stem Volume

5.1 Reasons for Volume Measurement

The volume of wood contained in the stem of a tree is one of the most important 
measurements made in forestry, because:

•	 Wood	is	the	principal	commercial	product	of	forests
•	 The	stem	contains	a	very	large	proportion	of	the	biomass	of	a	tree.

Of interest is not only the total volume of the wood in the stem of a tree, but also 
the	volumes	of	individual	lengths	cut	from	the	stem,	that	is,	of	logs.	Logs	of	differ-
ent	sizes,	both	in	diameter	and	length,	have	different	uses.	Usually	logs	of	larger	
diameter are required for conversion to solid wood products (that is, sawn in a 
sawmill	to	make	all	sorts	of	building	materials	and	many	other	products).	Generally,	
these	 larger	 logs	 attract	 a	 much	 higher	 price	 per	 unit	 volume	 of	 wood	 than	 do	
smaller	logs,	which	may	be	suited	only	for	chipping	for	use	in	paper-making.	The	
size	of	a	log,	as	well	as	its	quality	is	important	also.	Factors	such	as	its	straightness,	
the presence and size of branch knots and the presence or absence of any decayed 
wood	within	the	log	can	all	be	important	in	determining	its	value.

Any	one	tree	may	contain	a	wide	range	of	different	log	sizes.	Larger	logs	are	cut	
from	nearer	the	base	of	the	stem	and	smaller	ones	from	further	up.	There	will	usu-
ally be parts of the stem near the tip of the tree which are too small to use for any 
product;	these	are	usually	left	as	waste	on	the	ground	when	a	forest	is	logged.

These	days,	logs	are	often	sold	by	weight,	rather	than	by	volume,	because	it	is	
easier	 to	allow	 trucks	carrying	 logs	 to	a	mill	 to	pass	over	a	weighbridge	 than	 to	
measure	the	volume	of	the	logs	on	it.	However,	the	logs	on	any	one	truck	will	usu-
ally	have	been	sorted	at	the	time	of	felling	into	logs	of	a	particular	size	class,	hence,	
value.	Implicitly,	 this	means	 that	 logs	have	been	sorted	on	the	basis	of	 their	vol-
umes	and	their	conversion	to	weight	is	made	simply	on	the	basis	of	wood density.	
In	essence	then,	volume	remains	the	important	variable	for	the	characterisation	of	
log	size.

Forest	 science	 is	 often	 concerned	 with	 the	 production	 of	 biomass	 by	 trees;	
	scientists	 who	 study	 the	 factors	 that	 affect	 tree	 growth	 behaviour	 often	 need	 to	
know how much biomass is contained in various parts of the tree (leaves, branches, 
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bark,	stem,	coarse	roots	and	fine	roots).	Chapter	7 will discuss the measurement of 
tree	biomass.	Since	the	stem	contains	a	large	proportion	of	the	biomass	of	a	tree,	a	
proportion	which	increases	with	age	as	the	stem	continues	to	grow	larger	and	larger,	
its	correct	measurement	is	very	important.	As	will	be	seen	in	Chap.	7, stem biomass 
is	 often	 derived	 from	 stem	 volume	 by	 multiplying	 its	 volume	 by	 wood	 density.	
Thus, the issues discussed here for stem wood volume measurement are an impor-
tant	part	of	stem	biomass	determination.

This chapter will consider the various ways in which the wood volume of indi-
vidual	tree	stems	or	logs	is	measured.

5.2 ‘Exact’ Volume Measurement

No	tree	stem	is	perfectly	regular	in	shape.	All	stems	have	bends,	twists	and	lumps,	
where	 branches	 have	 emerged	 or	 there	 have	 been	 other	 environmental	 influences	
which	have	affected	 stem	shape	 (Sect.	 5.3.2).	Despite	 this,	 there	 are	 at	 least	 three	
methods of measurement which can take into account this complexity of stem shape 
and,	thus,	can	provide	very	precise	estimates	of	stem	volume	with	virtually	no	bias.

The	 first	method	 involves	 immersion	of	 the	 stem	 (perhaps	 after	 cutting	 it	 into	
bits)	in	water	and	measurement	of	the	volume	of	water	displaced.	This	is	known	as	
xylometry.	Generally,	it	is	impractical	for	any	but	exacting	research	work.	It	requires	
large	 immersion	 tanks,	which	are	not	portable	 for	 field	use,	and	 the	 tree	must	be	
felled	before	it	can	be	measured.	There	are	various	examples	of	the	use	of	xylometry	
in	research	projects	(Martin	1984;	Filho	and	Schaaf	1999;	Özçelik	et	al.	2008).

The second method uses lasers and has become common in sawmills, to assist 
in	determining	the	optimal	set	of	timber	products	which	can	be	sawn	from	a	log.	As	
a	 log	 enters	 the	 sawing	 line,	 multiple	 lasers	 scan	 it	 from	 several	 directions	 and	
measure	its	diameter	at	very	short	intervals	along	its	whole	length.	This	information	
is processed by a computer to produce a precise, three dimensional profile of the 
log,	from	which	its	volume	can	be	determined.	Because	of	the	complex	laser	equip-
ment involved, this method is not practical for field use and, as with xylometry, 
requires that the tree be felled before measurement

The	third	method	can	be	used	with	standing	 trees	 in	 the	field.	Using	a	digital	
camera,	a	tree	is	photographed	from	at	least	two	directions.	With	computer	analy-
sis, a three-dimensional view of its stem may then be produced; an example from 
Hapca	et	al.	(2007)	is	shown	in	Fig.	5.1.	Using	a	computer,	the	volume	of	the	tree	
stem	could	then	be	determined,	taking	into	account	the	fine	detail	of	any	irregulari-
ties	along	it.	However,	a	standing	tree	still	has	bark	on	its	stem,	so	the	volume	could	
only	be	inclusive	of	the	bark	and	wood	together.	In	the	example	in	Fig.	5.1, the tree 
did not have a very dense crown, so the camera was able to picture the stem well 
up into it; this would not be the case for many other types of trees, which have 
much	denser	crowns.

These	three	methods	are	capable	of	making	very	precise	estimates	of	 the	vol-
umes	of	at	 least	parts	of	 tree	stems,	by	 taking	a	 full	account	of	 the	 irregularities	
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which	occur	along	them.	However,	none	of	them	is	entirely	appropriate	or	practical	
if it is desired to measure the wood volume of trees which are still alive and stand-
ing	in	 the	forest.	Laser	scanning	and	photography	are	both	examples	of	methods	
known	by	the	general	term	remote sensing, that is, measurement methods which 
rely on equipment which takes measurements of objects at some distance from the 
equipment.	The	use	of	remote	sensing	is	a	rapidly	developing	area	of	tree	and	forest	
measurement	and	is	discussed	in	much	greater	detail	in	Chap.	13.

5.3 Volume by Sectional Measurement

It	is	very	common	in	forestry	practice	to	need	to	measure	tree	stem	wood	volumes	
in	the	field.	Whilst	new	methods	of	remote	sensing	are	being	developed	to	aid	in	
this	(Chap.	13),	it	is	still	most	common	that	such	measurements	are	made	directly	
by	people.	The	methods	they	use	have	a	long	history	of	development,	going	back	
to	the	nineteenth	century.	They	are	not	able	to	take	as	much	account	of	the	irregu-
larities	in	shape	along	a	tree	stem	as	the	methods	described	in	Sect.	5.2.	Fortunately	
however,	most	trees	in	most	forest	circumstances	are	sufficiently	regular	in	shape	
that these older methods can measure stem volumes with an accuracy and level of 
precision	 which	 is	 adequate	 for	 most	 forestry	 purposes.	 The	 methods	 can	 be	

Fig. 5.1 Stem	profile	of	a	standing,	70-year-old,	Sitka	spruce	(Picea sitch-
ensis)	tree,	derived	from	digital	photographs	of	the	tree.	The	total	height	of	
the	tree	was	22	m	and	its	diameter	at	breast	height	over	bark	was	29	cm.	
This	figure	shows	a	two-dimensional	profile	of	one	side	of	the	tree,	but	in	
fact	a	three-dimensional	profile	was	obtained	for	it,	by	taking	two	photo-
graphs	of	it	at	right	angles	to	each	other	(adapted	from	Fig.	4	of	Hapca	
et	 al.	 2007	 and	 reproduced	 by	 kind	 permission	 of	 the	 Annals	 of	 Forest	
Science)
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destructive	 (the	 tree	 is	 felled	 before	 measurement)	 or	 nondestructive	 (the	 tree	 is	
measured	standing).

The	principal	one	of	these	methods	is	known	as	the	sectional	method.	It	involves	
measuring	a	tree	stem	in	short	sections,	determining	the	volume	of	each	section	and	
summing	them	to	give	the	total	volume.

5.3.1 Sectional Volume Formulae

In	 the	sectional	method,	 the	volume,	V
S
, of a section of a stem is determined by 

measuring	the	length	of	the	section,	l, and some or all of the stem diameter at the 
lower	end	of	the	section	(commonly	referred	to	as	the	large	end	diameter),	d

L
, the 

diameter	at	the	upper	end	of	the	section	(small	end	diameter),	d
U
, and the diameter 

midway	along	the	section,	d
M

.	These	measurements	are	used	to	determine	the	vol-
ume	of	the	section	using	one	of	three	formulae,	each	named	after	the	person	who	
first	developed	it.	They	are	Smalian’s	formula,

 
2 2

S L U( ) / 8,= +V l d dπ  (5.1)

Huber’s	formula,

 
2

S M / 4=V ldπ  (5.2)

and	Newton’s	formula,

 
2 2 2

S L M U( 4 ) / 24.= + +V l d d dπ  (5.3)

The units of the measurements used with these formulae must be consistent, say, all 
in	metres	or	all	in	feet.	So,	for	a	3-m	long	stem	section	with	d

L
	=	0.320	m,	d

M
 = 

0.306	m	and	d
U
	=	0.296	m,	its	volume	estimated	by	Smalian’s	formula	(5.1) would 

be	0.224	m3,	 by	Huber’s	 formula	 (5.2)	0.221	m3	 and	by	Newton’s	 formula	 (5.3) 
0.222	m3.	The	differences	in	the	results	arise	from	the	different	amounts	of	informa-
tion	used	to	calculate	each	and	natural	irregularities	along	the	stem	section.

These	three	formulae	have	been	an	integral	part	of	forest	measurement	for	many	
years	and	remain	so	today.	All	three	will	give	an	unbiased	estimate	of	the	volume	
of a stem section if the section is cylindrical or shaped as part of what is known as 
a	quadratic	paraboloid	(Sect.	5.3.2).	Newton’s	formula	will	give	an	unbiased	result	
also	if	the	stem	section	is	shaped	as	part	of	a	cone.	Of	course,	even	if	a	stem	section	
is	shaped	generally	like	one	of	these	specific	shapes,	irregularities	along	the	stem	
(Sect.	3.4)	will	ensure	that	none	of	these	formulae	can	be	expected	to	give	a	section	
volume	exactly;	Fonweban	(1997)	gives	a	good	example	of	the	use	of	these	formu-
lae, where he determined the accuracy, bias and precision of volume estimates of 
stem	 sections	 cut	 from	 large	 trees	 in	 tropical	 forests	 of	 Cameroon.	 Whilst	 other	
formulae, and indeed different methods, have been developed from time to time to 
be used as alternatives to (5.1)–(5.3)	(van	Laar	and	Akça	2007;	Özçelik	et	al.	2008),	
none	is	in	use	consistently	today	and	they	will	not	be	considered	here.
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As discussed above, these three formulae assume that tree stems have particular 
shapes.	To	understand	how	 the	 formulae	have	become	such	an	 important	part	of	
forest	measurement	practice,	it	is	necessary	to	consider	how	tree	stems	are	shaped.	
Only	then	will	it	be	possible	to	judge	how	appropriate	these	formulae	really	are.

5.3.2 Tree Stem Shape

Tree	stem	shape	can	be	defined	as	the	way	in	which	stem	diameter	changes	with	
height	along	the	stem.	Much	research	was	undertaken	in	the	precomputer	era	of	the	
twentieth	century	to	try	to	determine	how	tree	stems	are	shaped.	Summarising	that	
research in modern parlance, it was believed that the stem diameter, d

x
, at any dis-

tance x from the tip of a stem could be described by the relationship

 x  d ρ= k x  
(5.4)

where k and r are parameters of the equation, that is, variables which take particu-
lar values in the equation for a particular stem, from which has been measured a set 
of	stem	diameters	and	distances	from	the	tip.	Note	that	Greek	letters	have	been	used	
to	 represent	 the	parameters	of	 this	equation.	Their	names	are	 listed	 in	 the	Greek	
alphabet	given	in	Appendix	C.

The	older	research	suggested	that	tree	stem	shape	varied	in	different	parts	of	the	
stem.	It	was	believed	that	near	the	base	of	the	tree	stem,	in	the	region	where	the	butt	
swell	occurred,	the	stem	generally	had	a	shape	known	as	a	neiloid,	when	the	param-
eter r in (5.4)	has	the	value	1.5.	Above	that,	and	for	the	main	part	of	the	stem	of	
the tree, at least into the lower part of the crown, it was believed that the stem was 
shaped as a quadratic paraboloid, when r	=	0.5	in	(5.4).	The	top	section	of	the	stem	
was believed to be conical, when r	=	1	in	(5.4).	Since	the	main	part	of	the	stem	was	
believed to be shaped as a quadratic paraboloid, and particularly because that is the 
part of the stem which is most used for timber, this led to the use of (5.1)–(5.3), all 
of	which	will	give	an	unbiased	estimate	of	volume	if	the	stem	is	indeed	shaped	as	
a	quadratic	paraboloid.

The advent of the computer has allowed much more detailed analysis of tree stem 
shape.	In	particular,	it	has	been	found	that	tree	stems	vary	their	shape	more	or	less	
continuously	along	their	length.	Functions	much	more	complex	than	(5.4), known as 
taper functions	(Chap.	6),	have	been	developed	to	describe	stem	shape.

This	is	illustrated	in	Fig.	5.2.	There,	the	shape	of	the	stem	under	bark	is	shown	
for a typical blackbutt (Eucalyptus pilularis)	 tree,	 a	 species	 important	 for	 wood	
production in subtropical Australia in both native	and	plantation	forests.	That	shape	
was	drawn	using	a	taper	function	developed	for	that	species.	Of	course,	taper	func-
tions	only	show	a	smoothed	stem,	without	the	minor	irregularities	that	will	occur	
naturally	in	any	real	stem	(Sect.	3.4).

Superimposed	as	dotted	lines	on	the	tree	stem	shape	shown	in	the	figure	are	the	
shapes that the stem would have if	its	lowest	2.5	m	was	shaped	as	a	neiloid,	if the 
main	part	of	the	stem	between	2.5	and	35	m	was	shaped	as	a	quadratic	paraboloid	
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and if	 the	 last	6	m	of	 the	stem	was	conical	 in	shape.	Whilst	some	deviations	are	
apparent between these three specific shapes and the actual stem shape, the differ-
ences	are	not	great.	That	is,	the	findings	of	the	older	research	do	not	seem	to	have	
been	 violated	 too	 grossly.	 This	 has	 justified	 the	 continued	 use	 of	 (5.1)–(5.3) to 
determine	the	volumes	of	sections	of	tree	stems	or	logs.

5.3.3 Sectional Measurement of Felled Trees

It	 is	quite	 straightforward	 to	use	 the	 sectional	method	 to	measure	 felled	 trees	or	
individual	logs	lying	on	the	ground.	In	both	cases,	the	bark	can	be	removed	so	that	
the	stem	wood	is	measured	directly.	Removing	the	bark	can	be	quite	difficult,	espe-
cially	at	times	of	year	when	the	trees	are	not	growing	rapidly	and	the	bark	may	be	
held	very	tightly	on	the	stem.	However,	once	the	bark	is	removed,	stem	diameter	is	
measured	 with	 a	 diameter	 tape	 or	 calipers	 at	 successive	 heights	 along	 the	 stem,	
right	to	the	tip	of	the	stem	or	to	whatever	stem	diameter	at	which	it	is	desired	to	
stop	measuring.

Various	decisions	need	to	be	made	when	taking	these	measurements.	If	Huber’s	
formula (5.2) is to be used to calculate the volume of each section, only section 
mid-diameters	 are	 measured.	 If	 Smalian’s	 (5.1), diameters at both ends must be 
measured.	 If	 Newton’s	 (5.3),	 all	 three	 diameters	 must	 be	 measured.	 Newton’s	
	formula	generally	gives	a	more	precise	result	 than	the	other	 two,	because	 it	uses	
more	information	to	calculate	the	volume.

Because	of	the	butt	swell,	care	needs	to	be	taken	near	the	base	of	the	tree.	The	
enlarged	diameter	at	the	base	of	the	stem	can	lead	to	substantial	bias	in	the	estimate	
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Fig. 5.2 Stem	profile	under	bark	of	a	felled	blackbutt	(E. pilularis)	stem	(curved solid lines),	with	
a	diameter	at	breast	height	over	bark	of	40	cm	and	a	total	height	of	41	m.	The	vertical solid lines 
are	positioned	at	heights	of	2.5	and	35	m	above	ground.	The	dashed lines show what the stem 
profile	would	be	 if	 the	 stem	was	 shaped	as	 a	neiloid	between	0	 and	2.5-m	height,	 a	quadratic	
paraboloid	between	2.5	and	35	m	and	a	cone	between	35	and	41	m.	Note	that	the	horizontal and 
vertical scales	of	the	diagram	differ	greatly	(drawn	using	an	unpublished	taper	function,	devel-
oped	in	1997	by	E.	Baalman,	then	of	the	state	forest	service	of	New	South	Wales,	Australia)



of	 the	 volume	 of	 the	 base	 section	 if	 that	 diameter	 is	 used	 with	 Smalian’s	 or	
Newton’s	formulae.	Care	is	needed	also	if	the	end	of	a	section	falls	on	a	bump	on	
the	stem,	such	as	where	a	branch	has	emerged.	The	usual	technique	of	averaging	
two	diameter	measurements	spaced	equally	above	and	below	the	irregularity	must	
then	be	used	(Sect.	3.4).

Perhaps	more	 importantly,	a	decision	needs	 to	be	made	as	 to	what	 length	 the	
sections	should	be.	Mathematically	speaking,	the	shorter	and	shorter	the	sections,	
the less and less important become any violations of the assumptions about stem 
shape which are implicit in (5.1)–(5.3) and the less will be any bias in the volume 
estimates	made	using	them.	Most	direct	tree	stem	volume	measurements	today	are	
made	using	quite	short	section	lengths,	perhaps	of	0.5–1	m	for	large	trees.	Shorter	
lengths	still	are	necessary	for	small	trees	only	a	few	metres	tall.	Usually,	Smalian’s	
formula, (5.1),	is	then	the	easiest	to	use	to	calculate	the	volume	of	each	section.

Less	attention	is	usually	paid	to	finding	the	volume	of	the	last	several	metres	of	
the	 stem	 of	 a	 large	 tree,	 perhaps	 above	 the	 point	 where	 the	 stem	 diameter	 falls	
below	3–5	cm,	than	for	the	lower	part	of	the	stem.	The	uppermost	part	of	the	stem	
contributes very little to the total volume of the stem, so a less precise measurement 
of	it	is	unimportant	in	adequately	determining	the	entire	stem	volume.	Usually,	only	
the diameter of the stem at the base of that last section is measured, d

T
 , and the 

distance t	to	the	tip	of	the	stem	is	measured.	Its	volume,	V
T
 , is then determined as 

that of a cone, that is,

 
2

T T /12,=V d tπ  (5.5)

where d
T
 and t	must	have	the	same	units.

Sometimes,	 it	 is	desired	 to	determine	 the	volumes	of	particular	classes	of	 log	
size	that	occur	in	a	tree.	Nothing	new	in	the	approach	is	necessary	to	do	this.	Still,	
care is needed to make sure that the stem is divided into sections which define the 
different	 log	 size	 classes	 so	 that	 their	 respective	 volumes	 can	 be	 determined.	
Section	lengths	may	then	become	somewhat	irregular.	Smalian’s	formula	is	usually	
the easiest to apply to obtain the section volumes, because the position of the mid-
point	of	each	section	does	not	have	to	be	located.

In	modern	forestry	practice,	it	has	become	quite	rare	to	need	to	measure	the	stem	
wood volumes of individual trees as part of routine forest management.	Mostly,	it	is	
done as part of a research project to obtain the data necessary to develop a tree vol-
ume function	or	taper	function	for	use	with	a	particular	tree	species	in	some	region	
of	forestry	interest.	These	functions	allow	estimation	of	stem	wood	volumes	of	stand-
ing	(or	felled)	trees,	usually	from	measurement	only	of	their	diameter	at	breast	height	
over	bark	and	their	total	height.	They	will	be	discussed	in	detail	in	Chap.	6.

5.3.4 Sectional Measurement of Standing Trees

Standing	trees	could	be	climbed	and	measured	sectionally	(measuring	both	diam-
eter	over	bark	and	bark	thickness)	to	determine	their	stem	wood	volumes.	However,	
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this	is	dangerous	and	labour-intensive	work,	which	is	done	rarely	today.	As	men-
tioned	above,	tree	volume	and	taper	functions	(Chap.	6)	are	available	now	for	many	
species	of	forest	tree	in	many	parts	of	the	world	to	provide	(usually	quite	precise)	
estimates of their volume of wood from measurements which can be made easily 
from	the	ground.

Generally,	it	is	only	in	circumstances	where	adequate	volume	or	taper	functions	
are	 not	 available	 that	 stem	 wood	 volume	 of	 standing	 trees	 must	 be	 measured	
directly.	Where	it	is	necessary,	various	high	quality	optical	instruments	are	availa-
ble	 (e.g.	 the	 Barr	 and	 Stroud	 dendrometer,	 the	 Telerelaskop,	 the	 Relaskop,	 the	
Wheeler	pentaprism,	the	laser	relascope−see	Kalliovirta	et	al.	2005)	which	allow	
stem	diameters	over	bark	 to	be	measured	 from	 the	ground	at	 any	height	desired	
along	the	stem.	Using	such	instruments	to	make	these	measurements	is	known	as	
optical	 dendrometry.	 Accuracies	 of	 measurement	 with	 these	 devices	 may	 be	 to	
within	1–5%	of	the	measured	stem	diameter.

As these instruments measure diameters over bark only, some additional method 
must be used to determine bark thicknesses, so that wood volume under bark can 
be	determined.	An	example	of	the	type	of	method	used	to	do	this	is	given	in	Sect.	
5.4.	Muhairwe	(2000)	has	summarised	and	tested	a	variety	of	functions	that	have	
been	developed	from	time	to	time	for	this	purpose.

One	difficulty	with	 these	 instruments	 is	 to	 sight	 the	stem	clearly	amongst	 the	
branches	in	the	crown.	Section	lengths	need	to	be	adjusted	to	make	measurements	
at	heights	where	the	stem	can	be	seen.	Care	and	practise	are	needed	to	use	these	
instruments	efficiently;	they	are	slow	and	time	consuming,	but	much	less	arduous	
and	dangerous	than	climbing	trees.

5.4 Volume by Importance or Centroid Sampling

A	method	which	 is	much	simpler	and	quicker	 than	using	sectional	measurement	
with	optical	dendrometry	(Sect.	5.3.4)	is	available	to	measure	directly	stem	volume	
of	standing	trees.	It	involves	one	or	other	of	what	are	known	as	importance	sam-
pling	or	centroid	sampling.

The	method	requires	that	the	stem	diameter	at	breast	height	of	the	standing	tree	
be	measured,	both	under	and	over	bark,	and	 that	 its	 total	height	be	measured.	 In	
addition,	one	further	value	of	stem	diameter	over	bark	must	be	measured,	high	up	
on	 the	 stem	of	 the	 tree.	An	optical	dendrometer	can	be	used	 to	make	 this	upper	
diameter	measurement.

Not only can this method be used to measure the total stem wood volume of the 
standing	tree,	but	also	it	can	be	used	to	measure	the	wood	volume	of	any	section	of	
the	tree	stem,	between	any	two	heights	above	ground	that	are	desired.	This	would	
allow measurement of the volume of a section of the stem from which a particular 
size	class	of	log	might	be	cut.	However,	an	additional	upper	stem	diameter	must	be	
measured to determine the volume of each particular stem section of which the 
volume	is	required.
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The method relies on careful selection of the point at which the upper stem 
diameter	is	measured.	There	are	two	methods	for	selecting	this	point,	importance	
and	centroid	sampling.	Wiant	et	al.	(1992)	have	published	a	simple	exposition	of	
how	the	method	is	applied.	Their	approach	was	followed	here	in	describing	it.

Firstly,	 suppose	a	 tree	has	a	diameter	at	breast	height	over	bark	of	D
o
 and its 

corresponding	diameter	under	bark	at	breast	height	is	D
u
.	Suppose	its	total	height	

(ground	to	tip)	is	H
t
.	Secondly,	suppose	it	is	desired	to	estimate	its	stem	wood	vol-

ume	under	bark	between	 two	points	on	 the	 stem,	 from	a	 lower	height,	H
l
, to an 

upper	height,	H
u
	(that	is,	0£H

l
 < H

u
£H

t
).	Thirdly,	the	height,	H

s
, must be determined 

at	which	the	upper	stem	diameter	over	bark	is	to	be	measured.	This	height	will	lie	
between H

l
 and H

u
.	To	do	this,	a	value,	k, is determined as

 
2 2

t u l 1 u2 (  )= - + -k H H H H H  (5.6)

and	this	is	used	to	determine	the	required	height	as

 2
s t t l( ) .= - - -H H H H kη  (5.7)

If	 importance	 sampling	 is	 to	 be	 used,	 then	 h in (5.7) should be a randomly 
selected	value	in	the	range	0–1.	If	centroid	sampling	is	being	used,	then	h	=	0.5;	
the	 centroid	 is	 the	 position	 along	 the	 stem	 section	 being	 considered	 above	 and	
below	which	half	of	the	section	volume	lies.	The	computations	in	(5.6) and (5.7) 
would be done with a calculator or computer, in the field, at the time a tree was 
being	measured.

Fourthly,	after	H
s
 has been calculated, the diameter over bark of the stem must 

be measured at H
s
,	usually	with	an	optical	dendrometer.	Suppose	this	is	found	to	be	

D
s
.	Then,	the	wood	volume	of	the	section	of	the	stem	between	H

l
 and H

u
, V

lu
, may 

be estimated as

 
2

lu s u o t s( / ) / [8( )].= -V k D D D H Hπ  (5.8)

Note	that	the	same	units	must	be	used	throughout	for	each	of	these	variables	(say,	
all	in	metres	or	all	in	feet).

Two	important	assumptions	have	been	made	in	deriving	(5.6)–(5.8).	The	first	is	
that the ratio of diameter under bark to diameter over bark is constant anywhere 
along	the	stem.	Research	with	many	forest	tree	species	has	suggested	this	is	often	
so,	at	least	for	a	large	part	of	the	stem.	This	assumption	could	be	used	to	determine	
under bark diameters from over bark when the sectional method is used with optical 
dendrometry	(Sect.	5.3.4);	other	methods	are	available	to	do	this	(Muhairwe	2000)	
and	their	assumptions	could	replace	this	assumption	in	the	present	theory.

The	second	assumption	is	that	the	stem	is	shaped	as	a	quadratic	paraboloid	along	
its	whole	length.	As	discussed	in	Sect.	5.3.2,	this	is	true	generally	for	a	large	pro-
portion	of	the	tree	stem,	above	the	butt	swell	and	below	the	crown.	The	method	can	
be modified for cases where research has provided better information about either 
of	 these	 assumptions	 for	 any	 particular	 tree	 species.	 However,	 if	 that	 type	 of	
research has been undertaken, it will usually have led to the development of tree 
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stem	volume	or	 taper	 functions	 (Chap.	6),	which	would	be	used	 in	place	of	 this	
method	anyway.

Consider	an	example	of	the	use	of	this	method.	Suppose	a	tree	had	D
o
	=	0.423	

m, D
u
	=	0.373	m	and	H

t
	=	38.0	m.	Suppose	an	estimate	of	stem	wood	volume	was	

required for the section of the stem from H
l
	=	0.2	m	above	ground	 to	H

u
	=	8	m	

above	ground.	Using	(5.6),	this	gives	a	value	of	k	=	528.84.	If	centroid	sampling	
was	being	used,	then	the	height	at	which	the	upper	stem	diameter	over	bark	must	
be measured is H

s
	=	3.9	m,	calculated	using	(5.7) with h	=	0.5.	Suppose	that	diam-

eter was then measured as D
s
	=	0.333	m.	Then,	using	(5.8), the wood volume of the 

required	stem	section	would	be	estimated	as	0.525	m3.
Alternatively,	if	importance	sampling	was	used,	suppose	that	after	choosing	

a	random	value	in	the	range	0–1	to	use	for	h in (5.7),	the	value	for	H
s
 was found 

to	be	4.5	m	and	that	the	stem	diameter	over	bark	measured	at	 that	height	was	
D

s
	 =	 0.329	 m.	 Then,	 the	 volume	 of	 the	 stem	 section	 would	 be	 calculated	 as	

0.522	m3.
Inevitably,	 the	 two	 volume	 estimates	 from	 importance	 and	 centroid	 sampling	

will	differ	slightly	because	of	the	different	sampling	methods	and	because	of	natu-
ral	irregularities	along	the	tree	stem.	However,	research	has	suggested	that	the	dif-
ferences	are	generally	small	and	thus	of	little	consequence.

The	method	can	be	used	to	estimate	total	stem	wood	volume	from	ground	to	tip	
as	well	as	the	volume	of	any	section	of	the	stem.	Considering	the	same	sample	tree	
as	 above,	 this	would	 involve	 setting	H

l
	 =	0	 and	H

u
 = H

t
	 =	38.0	m.	For	 centroid	

sampling,	this	would	lead	to	H
s
	=	11.1	m	and	the	stem	diameter	over	bark	would	

then	be	measured	at	that	height.	Suppose	this	diameter	was	0.243	m,	then	the	total	
stem	wood	volume	would	be	estimated	as	0.969	m3.	Of	course,	 the	assumptions	
implicit	 in	 the	 method	 (constant	 ratio	 of	 under	 to	 over	 bark	 diameter	 along	 the	
whole	stem	and	the	stem	shaped	as	a	quadratic	paraboloid)	are	less	likely	to	hold	
over	the	entire	stem	length	and	some	bias	is	likely	to	be	introduced	into	the	estima-
tion	of	total	stem	volume.

Research	 has	 suggested	 that	 both	 importance	 and	 centroid	 sampling	 have	
	sufficiently	small	bias	and	adequate	precision	in	estimating	stem	wood	volumes	of	
standing	trees,	that	they	can	be	used	for	many	practical	purposes	(Wood	and	Wiant	
1990;	Coble	and	Wiant	2000).	Certainly	they	are	far	quicker	and	easier	than	the	
use	of	optical	dendrometry	to	take	sectional	measurements	along	the	entire	stem	
of	a	standing	tree.	Examples	where	these	methods	have	been	used	in	practice	can	
be	found	in	Dieters	and	Brawner	(2007)	and	West	et	al.	(2008).	Research		continues	
on the development of approaches such as these to stem volume estimation 
(Özçelik	2008).
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Chapter 6
Stem Volume and Taper Functions

6.1 The Functions

As discussed in Chap. 5, stem volume measurement is a laborious and time consum-
ing task, even for felled trees. In modern forestry practice, one of the most common 
reasons for taking such measurements is to develop stem volume functions or taper 
functions, for a particular tree species in a particular forest region.

Volume functions allow estimation of the total stem volume of a standing tree 
from simple measurements, usually its diameter at breast height over bark and its 
total height. Sometimes, they also allow an estimation of the volume of particular 
size classes of logs within a tree so that the merchantable volume of wood 
available from it can be determined.

Taper functions estimate how the diameter of the stem of a tree varies along its 
length. As with volume functions, they generally require that only the diameter at 
breast height and total height of the tree be measured. Furthermore, they can be 
used to estimate both merchantable and total stem wood volumes. Taper functions 
are rather more complex to develop than volume functions, but the data required 
for both is the same: sectional measurements of the stems of a large sample of indi-
viduals of the tree species concerned provide all the data usually required.

Volume and taper functions have been developed for a very large number of 
species of trees important commercially to forestry around the world. In this chapter, 
these functions will be described generally, with reference to just a few examples.

6.2 Volume Functions

Three variations of stem volume functions will be considered. Firstly, there are 
those which allow estimation of the total stem volume from ground to tip, from 
measurements of diameter at breast height and total tree height. Secondly, there are 
variations on those functions, which require that a measure of the degree to which 
the stem tapers be made also. Thirdly, there are functions which allow estimation 
of the volume of part of the stem, so that merchantable volume can be determined.

P.W. West, Tree and Forest Measurement, 2nd edition, 33
DOI: 10.1007/978-3-540-95966-3_6, © Springer-Verlag Berlin Heidelberg 2009

10.1007/_6


34 6 Stem Volume and Taper Functions

6.2.1 Volume from Diameter and Height

Different researchers, working with different species in different parts of the world, 
have used various functional forms for stem volume functions. Generally, two 
basic forms have been used. Both allow estimation of the total stem volume from 
ground to tip (V), over or under bark, from measurements of stem diameter at 
breast height (D), usually over bark, and total height of the tree (H). The two func-
tional forms are

 2 2 2 2 2 .V a bD cH dD H eH fD H= + + + + + ¼¼¼  (6.1)

and

 = .b cV aD H  (6.2)

In these functions, the terms a, b, c, d,…etc. are parameters. That is, they will take 
particular values in the function developed for a particular species in a particular 
region. The string of dots after (6.1) implies that additional terms have sometimes 
been included in functions of this form, terms in higher powers of D and H and their 
products. Often, versions of (6.1) have been used which do not include all of the 
terms shown there. Research continues on which functional forms are most appropri-
ate for stem volume functions in particular cases (Williams and Schreuder 2000).

Given a data set collected from a sample of trees of a species, for each of which 
V, D and H has been measured, the values of the parameters of functions such as 
these will usually be determined using regression analysis. Regression analysis is 
one of the most powerful tools available for the analysis of data in the natural and 
physical sciences. It is used to determine how variables are related to each other 
and to provide predictions of values of one variable from one or several other vari-
ables. There will be no further discussion here of how regression analysis works, 
other than to say that some knowledge of mathematical statistics and some years 
of experience are necessary to apply it competently. It is discussed in standard texts 
(e.g. Draper and Smith 1988; Freund et al. 2006). The calculations required to do 
it are rather tedious and are done using a computer.

Table 6.1 lists an arbitrary selection from the literature of nine stem volume 
functions, developed for various species of trees in various parts of the world.  
It illustrates both the variety of functional forms that have been used from time 
to time, and the variety of species and places for which volume functions have 
been developed.

Functions 1–4 in the table are versions of (6.1). Functions 5–8 all have the form 
of (6.2). Function 9 has a form quite unrelated to either (6.1) or (6.2), illustrating 
that individual authors have used quite different functional forms from time to time. 
The specific values that the parameters take for each function are shown in the table.

It is interesting to compare the functions in Table 6.1 with each other. The solid 
lines in Fig. 6.1 show, for trees of 30 m height, how stem volume changes as stem 
diameter at breast height over bark changes, as predicted by each of the functions. 
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Similar diagrams could be drawn for trees of other heights. Note that two of the 
functions (7 and 8) estimate over bark volume, whilst the rest estimate under bark 
(that is, wood) volume.

It is obvious from the figure that different species of trees have substantially 
different stem volumes for any given stem diameter; over the range of the data in the 
figure, the largest and smallest volumes for any diameter differ by around 35%. This 
means that the shapes of the stems of the different species must differ appreciably. 
It is clear that applying a stem volume function developed for one species to 
another species could lead to substantial bias in the volume estimates obtained for 
the other species.

Especially since the 1960s, when computers became available readily to allow 
regression analyses to be carried out, forest scientists have developed many volume 
functions, for many tree species in many parts of the world and continue to do so 
(Cordero and Kanninen 2003; Akindele and LeMay 2006; Brandeis et al. 2006; 
Diéguez-Aranda et al. 2006b; Vallet et al. 2006).

The dashed line shown on Fig. 6.1 is the volume function

 U
20.3 ,V D H=  (6.3)

where V
U
 is tree stem volume under bark from ground to tip (m3), D is tree diameter 

at breast height over bark (m) and H is tree total height (m). This ‘easy to remem-
ber’ volume function gives a more or less average estimate of the tree stem wood 
volume for a tree of given diameter and height. Of course, I would not advocate 

Table 6.1 An arbitrary selection from the literature of stem volume functions, which allow total 
stem volume from ground to tip under (V

U
, m3) or over bark (V

O
, m3) to be predicted for an 

individual tree from its diameter at breast height over bark (D, m) and total height (H, m)

Number Function Species and location Reference

1 V
U
 = 0.298D2H Eucalyptus regnans, 

New Zealand
Hayward (1987)

2 V
U
 = 0.001 + 0.270D2H E. viminalis, New South 

Wales, Australia
Bi (1994)

3 V
U
 = 0.005 + 0.330D2H Pinus taeda, Southern 

USA
Williams and Gregoire 

(1993)
4 V

U
 = 0.037 + 0.28D2H Bursera simaruba, 

Puerto Rica
Brandeis et al. (2006)

5 V
U
 = 0.250D1.85H1.03 Picea glauca, Canada Morton et al. (1990)

6 V
U
 = 0.128D1.69H1.16 Pseudotsuga menziesii, 

USA and Canada
Rustagi and Loveless 

(1990)
7 V

O
 = 0.450D1.92H0.90 Juniperus procera, 

Ethiopia
Pohjonen (1991)

8 V
O
 = 0.311D1.93H1.02 Gironnierra subaequalis, 

Southern China
Fang and Bailey 

(1999)
9a V

u
 =  exp[–1.75 + 1.29/(D + 1.27)2] 

D2H
E. regnans, Victoria, 

Australia
Opie (1976)

a The expression ‘exp’ in this function means that the mathematical constant ‘e’ is to be raised to 
the power of the value calculated in the square brackets after the expression. The constant ‘e’ is the 
base of natural logarithms. Its value is approximately 2.7183
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its use if it was desired to estimate properly the stem volume of any tree. However, 
it is useful as a rule-of-thumb for anyone who wishes to make a rough estimate of 
stem volume, for a tree for which they do not have to hand a specific volume 
function.

In forestry practice, it is often necessary to estimate volumes available of logs 
of various size classes, so that the amount of merchantable volume can be deter-
mined. The functions described in this subsection allow estimates only of the total 
volume of the stem. However, total volume is useful to forest scientists, because 
it is a good measure of tree growth. An even better measure of growth is tree bio-
mass; as will be seen in Sect. 7.4.2, tree stem volumes can often be used to predict 
tree biomasses.

6.2.2 Volume from Diameter, Height and Taper

The volume functions considered in Sect. 6.2.1 required that only tree stem diameter 
at breast height over bark and total height of the tree be measured. Some researchers 
have developed volume functions which require measurement also of the degree to 
which the stem tapers.

0.5
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3.5

25 35 45 55 65

V
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um
e 

(m
3 )
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Fig. 6.1 The solid lines show the relationships between stem volume and diameter at breast 
height over bark for trees 30 m tall, as predicted by each of the nine tree volume functions listed 
in Table 6.1 (which function refers to which line has not been shown in the figure). The dashed 
line shows the rule-of-thumb volume function for general use, (6.3)
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It is well known in forest science that, as trees sway in the wind, the forces to 
which this subjects their stems increases their taper. In an experiment where large 
trees were tied with cables to prevent them swaying, the tree stems became almost 
cylindrical after several years, that is, to have virtually no taper (Jacobs 1954). 
Other experiments have shown that bending stresses in the stem due to wind sway 
increase both wood strength and stem taper (Valinger 1992; Osler et al. 1996a; 
Dean et al. 2002; Mäkelä 2002; Fourcaud and Lac 2003; Fourcaud et al. 2003; 
Dean 2004; Watt et al. 2006a, b).

In forestry, management practices are often undertaken which affect the degree 
to which trees are exposed to the wind and, hence, the degree to which they sway. 
Opening the forest, by removing some of the trees in thinning a plantation, is one of 
the most common of these practices. Under these circumstances, it would be expected 
that a stem volume function which took into account stem taper might be able to 
better estimate stem volumes in both thinned and unthinned stands.

The additional information required to assess stem taper usually involves 
measuring another tree stem diameter at some height other than breast height. 
The height chosen is usually not far up the stem, so that the additional diameter can 
be reached without too much difficulty. Two examples will be used to illustrate 
such functions. The first is for Douglas fir (Pseudotsuga menziesii) in northern 
USA and Canada, developed by Rustagi and Loveless (1990). Their function was

 2

U D

2

0.146  + 0.433 ,=V D H D H  (6.4)

where V
U
 (m3), D (m) and H (m) are as for (6.3) and H

D
 (m) is the height up the tree 

stem at which the diameter over bark is two-thirds of the diameter at breast height 
over bark (a height which may be rather tedious to locate on a tree).

In this case, stem taper is being allowed for by including the variable H
D
 in the 

function; the more the stem tapers, the shorter will the distance be above breast height 
at which stem diameter becomes two-thirds of breast height diameter. Rustagi and 
Loveless found that this function gave appreciably more precise estimates of tree 
stem volume than a function which did not include the measure of stem taper (it 
was Function 6 in Table 6.1).

The second example was developed by Aleixo da Silva et al. (1994), using com-
bined data for loblolly pine (Pinus taeda) and slash pine (P. elliottii) from the 
southern USA and Honduran Caribbean pine (P. caribea var. hondurensis) from Sri 
Lanka. Their function was

 2

o a b/ ,0.196 [1 ][ / ( 1.52)]V D H D D H H= + -  (6.5)

where V
O
 is tree stem volume over bark from ground to tip (m3), D (m) and H (m) 

are as above and D
a
 and D

b
 are the stem diameters over bark (m) at 1.52 and 0.152 

m above ground respectively. In this case, it is the ratio of the two diameters from 
two different heights on the stem, D

a
 and D

b
, which acts as the measure of stem 

taper. It is interesting that this single function seemed to give reliable results for 
three different species of pine in two very distant parts of the world.
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6.2.3 Merchantable Stem Volume

A single example will be used to illustrate the type of function that has been 
developed to estimate the volume of a part of the stem only. This is usually the 
volume to some particular diameter along the stem, which determines the point 
above which logs of a particular size class can no longer be cut.

The example was developed by Shiver and Brister (1992) for plantations of 
Sydney blue gum (Eucalyptus saligna), up to about 10 years of age in Kenya. Their 
function was

 
1.83 1.24 3.49 3.37

d
0.0950 (1 1.24 / ),V D H d D= -  (6.6)

where V
d
 is the stem volume under bark (m3) from ground level up to the point on 

the stem where its diameter over bark becomes d (m), D is tree diameter at breast 
height over bark (m) and H is tree total height (m).

Consider how this function might be useful. Suppose that two possible products 
could be cut from trees in these forests, posts or pulplogs (small logs to be chipped 
and used for paper-making). Suppose posts must have a diameter over bark at their 
small end of at least 0.15 m and pulplogs can be cut up to a stem diameter over bark 
of 0.06 m. Consider a tree with D = 0.24 m and H = 25 m. Then, using d = 0.15 m, 
(6.6) shows that 0.301 m3 of the stem could be cut as posts. With d = 0.06 m, 
the function shows 0.375 m3 of pulplogs could be cut from the stem. If all the 
volume that could be used for posts was indeed used, then there would be 0.074 m3 
(=0.375−0.301) left to be sold as pulplogs. This type of information would be useful 
to forest planners attempting to determine what volumes of posts and pulplogs 
could be harvested from trees in these forests.

One of the limitations of this type of merchantable volume function should be 
evident from this example. Merchantable log sizes are defined usually not only by 
the minimum diameter they may have at the small end of the log, but also by the 
minimum length the log must have. Thus, it might be that a post must be at least 2 
m long, say, or it would be too short to be sold as a post. Whilst the tree in the 
example would yield a total of 0.301 m3 of material large enough in diameter to 
be posts, there might be insufficient length of material in that volume for it all to be 
used as posts. No information about the length available is given by the mer-
chantable volume function. As discussed in Sect. 6.3, taper functions overcome this 
limitation of merchantable stem volume functions.

It should be noted also that if d = 0 in the example, that is, where the stem 
diameter becomes zero at its tip, (6.6) then gives the total stem wood volume of the 
tree from ground to tip. In other words, (6.6) can be used in just the same way as 
the other volume functions described in Table 6.1.

An additional problem in determining merchantable volume (or indeed total 
stem wood volume) is that trees are found quite often with their stem partially 
hollowed out. Termites and wood decay fungi are the most common causes of this. 
The damage may extend for several metres up from the base of the tree, reducing 
substantially the amount of usable wood which can be cut from it. Externally, the 
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tree may appear perfectly sound. If the presence of decay is suspected, ultrasound 
can be used to measure it (Martinis et al. 2004). However, its presence often does 
not become evident until the tree is felled. Functions have been developed which 
can at least estimate the likelihood that a stem of a tree of particular species 
contains such damage; Schneider et al. (2008) give a good example.

6.3 Taper Functions

Taper functions estimate how the diameter of the stem (over or under bark) changes 
along the length of the stem. The reasons why stems taper, in response to the forces to 
which they are subjected as trees sway in the wind, were discussed briefly in Sect. 6.2.2. 
At present, our understanding of this process is inadequate and we have not yet 
developed any theory sufficiently well to describe fully how and why stems taper.

Because of this, most taper functions developed to date are empirical functions. 
That is, they have been determined by trial and error, by measuring how diameter 
changes along the length of tree stems and then finding some mathematical functional 
form which describes adequately the shape of the stem. Research has been attempting 
to develop taper functions from a more theoretical basis, but this work still has far to 
go (Sharma and Oderwald 2001; Deleuze and Houllier 2002; Ikonen et al. 2006).

In this section, some examples will be given of taper functions which have been 
developed for various species in various parts of the world. The way in which they can 
be used to predict both total and merchantable stem volumes will then be described.

6.3.1 Examples of Taper Functions

Sharma and Oderwald (2001) developed a taper function for trees in natural forests 
of loblolly pine (P. taeda) in the southern USA. It was

 
0.185

oh ( / 1.37) ( ) / ( 1.37),d D h H h H-= - -  (6.7)

where d
oh

 is stem diameter over bark (cm) at height h (m) above ground, D is stem 
diameter at breast height over bark (cm) and H is tree total height (m). Malimbwi 
and Philip (1989) developed a function for plantations of Mexican weeping pine  
(P. patula) in Tanzania as

 
0.932 0.610 0.448

uh
0.774 ( ) / ,d D H h H= -  (6.8)

where d
uh

 is stem diameter under bark (cm) at height h (m) above ground and D 
(cm) and H (m) are as above.

Figure 6.2 shows the stem shapes predicted by these functions, for example trees 
of a particular diameter and height. The stem profile for P. taeda shows clearly the 
butt swell near the base of the stem, but the butt swell is missing for P. patula; 
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Malimbwi and Philip did not describe fully how they collected the data for their  
P. patula trees and it may be that they excluded lower stem data.

Mathematically speaking, both (6.7) and (6.8) are quite simple. Functions such 
as these often describe tree stem shape quite well, particularly in its midsections. 
However, rather more complex functions seem to be necessary to ensure the shapes 
of the upper and lower sections of the stem are also well defined. As an example, 
Brooks et al. (2008) used a function, suggested by Max and Burkhart (1976), to 
describe shape of the stem of three commercially important species native to 
Turkey, Brutian pine (P. brutia), Cedar of Lebanon (Cedrus libani) and Cilicica fir 
(Abies cilicica), whilst Sharma and Burkhart (2003) used the same function for 
loblolly pine (P. taeda) from plantations in the south-eastern USA. This rather cun-
ning function considers the tree stem to be shaped as a neiloid near its base, as a 
paraboloid in its midsection and as a cone near the tip, that is, consistent with the 
older research findings discussed in Sect. 5.3.2. The function is

= - + - + - + -2

2

2 2

1 2 3 1 4 2oh 1[( / ) 1] [( / )  1] [ ( / )] [ ( / )] ,d D b h H b h H b a h H I b a h H I  (6.9)

where d
oh,

 (cm), h (m), D (cm) and H (m) have the same meanings as above, a
1
, a

2
, 

b
1
, b

2
, b

3
 and b

4
 are parameters, I

1
 = 1 when (h/H) £a

1
 or zero otherwise and I

2
 = 1 

when (h/H) £a
2
 or zero otherwise; note that in Sharma and Burkhart’s case, they 

predicted diameter under bark (d
uh

, cm) rather than diameter over bark. In this 
function, the value of the parameter a

2
 defines the relative height (h/H) at which 

the stem shape changes from a neiloid to a quadratic paraboloid, whilst a
1
 defines the 

relative height above which it becomes conical. The parameter values determined 
for the four species are shown in Table 6.2.
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Fig. 6.2 Profiles of the stems of trees of P. taeda over bark (as predicted by 6.7) and of P. patula 
under bark (6.8). In both cases, the trees were assumed to have a diameter at breast height 
over bark of 23 cm and a height of 21 m. Note that the vertical and horizontal scales of these 
diagrams differ greatly (drawn using taper equations of Sharma and Oderwald 2001 and Malimbwi 
and Philip 1989)
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Table 6.2 Parameter values of (6.9) for four tree species, as used to draw results in Fig. 6.3

Parameter P. brutia C. libani A. cilicica P. taeda

a
1

0.7313 0.7593 0.849 0.7487
a

2
0.1307 0.1116 0.171 0.0867

b
1

−3.0832 −3.6549 −2.9364 −3.3108
b

2
1.486 1.7947 1.3965 1.5745

b
3

−0.9304 −1.3658 −0.7093 −1.7299
b

4
17.9703 25.9476 5.4083 65.9168

Figure 6.3 shows the stem profiles predicted using this function, for a tree of a 
particular diameter and height of each of the four species. It appears that P. brutia 
and C. libani stems are rather similar in shape, whilst P. taeda has a rather more 
pronounced butt swell and A. cilicica rather less so. Note also that the stem shape 
defined for P. taeda appears rather more complex than it does in Fig. 6.2, where a 
more simple function (6.7) was used.

Research continues in the development of taper functions and many have now 
been developed for different species around the world, often using functional forms 
different from the examples given here (Hayward 1987; Bi 2000; Zhang et al. 2002; 
Bi and Long 2001; Valentine and Gregoire 2001; Garber and Maguire 2003; 
Ter-Mikaelian et al. 2004; Jiang et al. 2005; Teshome 2005; Diéguez-Aranda et al. 
2006b; Koskela et al. 2006; Lappi 2006; Zakrzewski and MacFarlane 2006; 
Newton and Sharma 2008; Özçelik 2008).

6.3.2 Using Taper Functions

The function developed for Tanzanian P. patula by Malimbwi and Philip (1989), 
(6.8), will be used as an example to illustrate how taper functions are used. For the 
sake of the example, suppose the only merchantable log products which can be cut 
from P. patula plantations in Tanzania are sawlogs (logs large enough to be sawn 
into one or more of the many types of sawn wood used for building and many other 
purposes) or pulplogs. Suppose sawlogs are 2.4 m long and their under bark diameter 
at their small end must be no less than 15 cm. Suppose pulplogs are 3 m long and 
their under bark diameter at their small end must be no less than 8 cm.

Figure 6.4 shows the stem profile, predicted using (6.8), of the same P. patula 
tree as shown in Fig. 6.2, that is, with a diameter at breast height over bark of 23 
cm and a total height of 21 m. The taper function may now be used to determine 
what sawlogs and pulplogs could be cut from this tree. Since sawlogs must have a 
diameter under bark at their small end of at least 15 cm, the first step is to determine 
how far up the stem it is before the diameter becomes less than this. This can be 
determined by rearranging algebraically (6.8) to give h on the left-hand side, that is,

 0.448 0.932 (1/0.610)

uh[ / (0.774 )] .h H d H D= -  (6.10)
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Fig. 6.3 Profiles of the stems of trees of (a) P. brutia, (b) C. libani, (c) A. cilicica and (d) P. taeda, 
determined using (6.9) with parameter estimates as given in Table 6.2. Each tree was assumed to 
have a diameter at breast height over bark of 45 cm and a height of 20 m. Below the lower dashed 
line, the stem shape is neiloidal, Above the upper dashed line, it is conical. Between these 
points, it is paraboloidal (drawn using taper equations of Brooks et al. 2008 [a,b,c] and Sharma 
and Burkhart 2003 [d])
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Using (6.10), with H = 21 m, D = 23 cm and d
uh

 = 15 cm, shows that the stem 
diameter becomes 15 cm at 11.0 m from the base. This means that, at the most, four 
sawlogs can be cut from the stem, since each is 2.4 m long. Of course, when the 
tree is felled, it will be cut some little distance above its base, usually at a height 
(called the stump height) of about 0.2 m above ground. Thus, the four 2.4 m sawlogs 
could be cut from stem sections which are positioned 0.2–2.6, 2.6–5.0, 5.0–7.4 and 
7.4–9.8 m along the stem. Whilst the last part of this section of the stem, 9.8–11.0 
m, has a diameter large enough to be a sawlog, it is not long enough to be so. 
The positions of those four sawlogs are shown on Fig. 6.4.

With four sawlogs cut from up to 9.8 m along the stem, the number of pulplogs 
which can be cut from the remainder of the stem can now be calculated. Using (6.10) 
with d

h
 = 8 cm, the smallest diameter that the small end of a pulplog may have, it 

is found that pulplogs cannot be cut above 17.4 m along the stem. Thus, pulplogs 
could be cut from the 7.6 m long section extending over 9.8–17.4 m along the 
stem. Because pulplogs are 3 m long, two could be cut, positioned at 9.8–12.8 
and 12.8–15.8 m along the stem. Their positions are marked also on Fig. 6.4. 
The remaining 5.2 m of the stem, 15.8–21 m, would be wasted.

In practice, the logs which could be cut from the stem will not occupy exactly 
the positions determined in this example. The few millimetres width of wood lost 
in cross-cutting with a chainsaw would have to be allowed for in positioning the 
logs. Also, where there are defects in the stem, a large branch swelling say, that 
point would be avoided when the stem is cross-cut. Sometimes, forest planners 
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Fig. 6.4 Under bark profile of the stem of a P.patula tree with a diameter at breast height over 
bark of 23 cm and a height of 21 m. For the example described in the text, the dashed lines show 
the positions from which sawlogs (Saw) and pulplogs (Pulp) could be cut from the stem and what 
would be wasted (Waste) (derived using the taper function of Malimbwi and Philip 1989)
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develop functions additional to their taper function to estimate where such defects 
are likely to occur on the stem and improve their estimates of exactly what logs can 
be cut from a particular stem.

Once it has been determined from what positions along the stem logs can be cut, 
the taper function allows additional information to be obtained about the size of 
each log. Knowing the heights in the stem at which the cross-cuts are made, (6.8) 
can be used to determine the diameters of each log at both its small and large end. 
Table 6.3 lists those values for the sample tree.

Furthermore, the taper function can be used to determine the volume of each of 
the logs. To do this requires the use of integral calculus. Calculus in general (of which 
integral calculus is a part) is an extremely important and widely used mathematical 
tool, invented in the late seventeenth century independently by an Englishman, 
Sir Isaac Newton, and a German, Gottfried Leibniz. This is not the place to discuss 
calculus, which is a complex field of mathematical study in its own right.

However, a brief idea can be given of how integral calculus would be used, with 
a taper function, to calculate the volume of a log positioned in a stem at a lower 
height above ground L (m) and an upper height U (m). Integral calculus first 
imagines that a very thin disc is cut from the stem at the lower height, L. The taper 
function is used to determine the diameter of the disk at that height and, hence, its 
circular cross-sectional area. The volume of the thin disc is then calculated assuming 
it is cylindrical in shape.

Integral calculus then imagines that a second thin disk is cut immediately above 
the first, and calculates its volume also; the second thin disk has a slightly smaller 
diameter than the first one because it comes from further up the stem. This process 
continues until the volumes of all the thin disks have been calculated right up to the 
upper height in the stem, U. Their volumes are then added up to give the total volume 
of the stem section between L and U. The real beauty of integral calculus is that it 
is able to imagine that each thin disk is infinitesimally thin (that is, it has no thickness 
at all). Thus, there is no error made by assuming that each disk is actually cylindrical, 
whereas a thin, but finite, disk would have a slightly smaller diameter at its upper 
end than at its lower end.

Table 6.3 Positions in the stem and diameters and volumes of the various logs, the stump and the 
waste section, which would be cut from the example tree shown in Fig. 6.4. Results are shown 
also for the entire stem

Position along stem Diameter Volume

Log (m) Large end (cm) Small end (cm) (m3)

Stump 0–0.2 23.6 23.4 0.0087
Sawlog 1 0.2–2.6 23.4 21.7 0.0962
Sawlog 2 2.6–5.0 21.7 20.0 0.0820
Sawlog 3 5.0–7.4 20.0 18.1 0.0683
Sawlog 4 7.4–9.8 18.1 16.1 0.0550
Pulplog 1 9.8–12.8 16.1 13.3 0.0510
Pulplog 2 12.8–15.8 13.3 10.1 0.0325
Waste 15.8–21 10.1 0 0.0186
Entire stem 0–21 23.6 0 0.4123
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In the formal language of integral calculus, we write this process for the determi-
nation of the volume of a log (V

LU
, m3) between heights L and U (m) in a stem as

 = π∫ 2

h( / 40,000) d .
U

LU
L

V d h  (6.11)

In this relationship, the term (p/40,000)d
h
2 represents the circular cross-sectional 

area (m2) of the stem at height h (m), where its diameter is d
h
 (cm), and the term dh 

(which is read in calculus as ‘with respect to changing height along the stem’) 
represents the (infinitesimally small) thickness (m) of the disk cut at that point. 
Their product (p/40,000)d

h
2dh is the volume (m3) of the thin disk, assuming it is 

cylindrical. The terms L and U in (6.11) indicate that disks are to be cut between 
those two heights in the stem, and the special integral calculus symbol ∫ (which is 
read as ‘the integral of’) means that the volumes of all the thin disks between L and 
U are to be summed to give their total volume V

LU
.

Returning now to the example, substitute the right-hand side of the taper func-
tion (6.8) for d

h
 in (6.11), to give (with the squaring of d

h
),

 
1.864 1.220 0.896( / 40,000)[0.599 ( ) / ]d .

U

LU
L

V D H h H h= π −∫  (6.12)

It is now possible to rewrite this integral in a normal mathematical form, which 
allows the volume to be calculated directly (there are mathematical text books on 
calculus which help you to do this integration). Doing so gives

 = π − − −1.864 0.896 2.220 2.220( / 40,000){0.599 / }{[( ) ( )] } / 2.220.LUV D H H L H U  (6.13)

Please note the erratum to this equation at the end of the book. 

Given this, consider the first sawlog cut from the base of the stem of the sample tree 
(Fig. 6.4). It was positioned between heights 0.2 and 2.6 m along the stem, so for it L = 
0.2 m and U = 2.6 m. Remembering that D = 23 cm and H = 21 m, (6.13) can be used 
to determine the volume of the log as 0.0962 m3. Similarly, the volumes of each of the 
logs to be cut from the tree (and that of the stump at the base and waste section at the 
tip) can all be calculated using (6.13). The results are given in Table 6.3. Also, with L = 
0 and U = 21, (6.13) can be used to determine the entire stem volume as 0.4123 m3; of 
course, you will find that adding together the volumes of the various logs and those of 
the stump and waste will give exactly the same volume as this total.

It is important to note that it is not always possible algebraically to rearrange a 
taper function in order to use it directly to determine the height along the stem at 
which a particular diameter occurs (as was done with 6.10). Nor is it possible 
always to find the integral of a function as was done in obtaining (6.13) from (6.12). 
However, there are mathematical techniques available, called numerical tech-
niques, which allow these heights to be determined and volumes to be calculated, 
even when these mathematical difficulties are encountered. These techniques are 
mathematically complex in themselves and can certainly be done practically only 
with the aid of a computer. They will not be discussed further here.
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Given the discussion in this section, it can be seen that taper functions can be 
used to do all the things that stem volume functions can do. As well, they can be 
used to give additional detailed information about the logs which can be cut from 
a tree, information which is not available from stem volume functions. These days, 
most researchers prefer to develop taper functions, rather than stem volume 
functions.



Chapter 7
Biomass

7.1 Reasons for Biomass Measurement

Sale of logs for milling or paper-making has long been the principal market for the 
forestry industry and remains so. As it is the volume of a log which determines if 
it is large enough to be sawn to produce timber, forestry has been concerned tradi-
tionally with the measurement of the volume of the wood of the stem. That is why 
two complete chapters (5 and 6) have been devoted to the topic in this book.

However, there is an increasing interest in measurement of the biomass, that is, 
the weight of trees. Furthermore, it is not only the biomass of the stem which is of 
interest, but also the biomasses of the other parts of the tree, its leaves, branches 
and roots. Reasons for this interest include:

•	 All	plants	(including	trees)	produce	biomass	 through	photosynthesis.	 If	scien-
tists are to understand properly how tree growth occurs, they need to know how 
much biomass trees produce

•	 Concerns	with	global	warming.	There	is	much	interest	in	how	much	carbon	is	
sequestered in forest biomass around the world as a result of trees taking up the 
greenhouse gas carbon dioxide

•	 The	establishment	of	plantation	forests,	to	be	grown	for	3–5	years	for	bioenergy	
production. This wood is sold by weight, not volume

•	 Products	such	as	firewood	or	wood	for	paper-making	are	often	sold	by	weight.

This chapter describes the techniques used to measure the biomass of various parts 
of	individual	trees.	It	then	describes	functions	which	have	been	developed	to	estimate	
the biomass of trees from easily measured tree characteristics.

7.2 Measuring Biomass

Felling, dissecting and weighing trees can be a major undertaking, even more so if 
the root system is excavated. A large forest tree, say with a diameter at breast height 
over	bark	of	35–40	cm	and	total	height	of	30–35	m,	might	weigh	3–5	tonne	when	
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freshly	cut.	Of	this,	2–3	tonne	might	be	the	stem,	0.5–1	tonne	might	be	roots	and	
0.3–0.5	tonne	might	be	leaves	and	branches.	Even	bigger	trees	than	this	occur	in	
forests	and	 their	 total	weight	can	exceed	20	 tonne.	 In	contrast,	very	young	 trees	
may weigh only a few kilograms, so it is trivial by comparison to fell and weigh 
them.	Even	then,	excavation	of	the	root	system	can	be	a	tedious	task.

Usually, it is desired to measure the dry biomass of the tree, that is, its weight 
after	the	water	has	been	removed	from	the	fresh	biomass.	Water	makes	up	about	
50%	of	the	weight	of	plants.	Unlike	nearly	all	the	other	biomass	of	a	plant,	water	
is not manufactured by the plant through photosynthesis or other metabolic proc-
esses.	It	is	taken	up	from	the	soil	by	the	roots.	Thus,	if	the	objective	of	the	measure-
ment is to determine what the plant has produced through its metabolic processes, 
it is the dry biomass that is relevant to measure, not the fresh biomass. Also, the 
amounts of water in plants can vary quite widely from time to time during the day 
or in different seasons. Thus, if consistency is required between measurements 
made of different trees at different times of year, dry biomass will be a more appro-
priate measure then fresh biomass.

To determine the oven-dry weight of biomass, fresh plant material is put in large 
laboratory	 ovens	 and	 dried	 at	 60–80°C	 for	 several	 days,	 until	 the	 weight	 of	 the	
dried material remains constant. Laboratory ovens are limited in size, so it is obvi-
ously impractical that all of a large forest tree should be dried; some form of sam-
pling has to be done and only the sampled material is dried.

This section describes methods to measure the biomass of large trees. The dif-
ficulty of the various procedures described will decline steadily as the size of the 
tree declines.

7.2.1 Branches and Foliage

There are two strategies used to reduce the amount of work required to measure the 
biomass of branches and foliage after a tree is felled. The first involves counting all 
the branches which emerge from the main stem and then selecting a sample from 
amongst them, usually by a random selection procedure. Mathematically formal 
procedures	 for	 selecting	 the	 sample	have	been	developed	 (Valentine	 et	 al.	 1984;	
Gregoire	et	al.	1995).	Leaves	are	removed	(usually	by	tedious	cutting	with	scissors)	
from the sample branches and the branches themselves are cut into convenient 
lengths. The sample material is taken to the laboratory for drying. Sometimes also, 
the fresh weights of the sample leaves and branches are measured, by weighing it 
with a large balance in the field; a randomly selected sub-sample is then weighed 
fresh in the field and only this material is dried.

Given the dry weight data from the sample, and knowing the number of branches 
included in the sample and on the whole tree, it is straightforward to estimate the 
total dry weight of all the branches and foliage in the crown. Sometimes it is desired 
to estimate also the bark of the branch separately from the branch wood. This 
requires that the bark be stripped from the sample branches and its weight determined 



separately.	 Bark	 removal	 can	 be	 very	 difficult,	 particularly	 at	 times	 of	 the	 year	
when the tree is not actively growing.

The second, and probably more precise, strategy for estimating branch and foli-
age weight is founded on the principle that branches must be sufficiently large to 
support the weight of the leaves, to some distance out from the stem, and to resist 
the	forces	imposed	on	them	by	the	wind.	Because	of	this,	there	is	usually	a	close	
relationship between both branch weight and the weight of the foliage they support 
and	easily	measured	branch	characteristics,	such	as	the	diameter	at	their	base	and/
or their length.

Given this, the diameter at the point where they join the stem of all the branches 
on	 a	 felled	 tree	 would	 be	 measured,	 together	 with	 their	 lengths.	 Where	 large	
branches have smaller branches arising from them along their length, the length is 
measured of the main branch only. A sample of branches from the tree is then 
selected and their foliage and branch material removed to the laboratory for drying. 
Using the sample data, regression relationships (Sect. 6.2.1) are established to allow 
estimation	of	foliage	and	branch	dry	weights,	from	branch	diameter	and/or	length,	
for all the other branches along the stem which were not included in the sample.

Often it is desired to measure the area of leaves, rather than their biomass. Since 
it is the leaf surface that absorbs light from the sun to provide the energy for 
photosynthesis and from which water is released by the leaves to the atmosphere, 
scientists studying plant growth behaviour often need to know the area of the leaves 
instead of, or as well as, the biomass of the leaves.

The area of samples of leaves obtained for biomass measurement may be deter-
mined by placing them on a digital scanner; computer programs are then available 
to	determine	the	area	of	the	scanned	image.	In	essence,	this	means	that	leaf	area	is	
being defined as the area of the shadow which a leaf casts when held horizontally 
over a flat surface, with light shining vertically down on it. The same definition is 
used for both broad- and needle-shaped leaves.

Often, both leaf area and leaf oven-dry biomass are determined and the two 
values used to calculate the specific leaf area, which is the area of the leaves per 
unit of their oven-dry biomass (its inverse, specific leaf weight is often reported 
also).	In	essence,	specific	leaf	area	is	a	measure	of	the	thickness	of	the	leaves.	It	
varies	widely,	perhaps	in	the	range	2–40	m2/kg,	with	tree	species	and	tends	to	be	
lower	 in	 older	 trees	 (Holdaway	 et	 al.	 2008),	 in	 trees	 growing	 in	 wetter	 environ-
ments	 (Gouveia	 and	 Freitas	 2008),	 in	 overstorey	 plants	 growing	 in	 full	 sunlight	
(e.g.	Specht	and	Specht	1999;	Atwell	et	al.	1999)	and	in	the	better	lit,	upper	parts	
of the canopy (the foliage and branches of the forest) (Monserud and Marshall 
1999;	Grote	and	Reiter	2004).

Dead branches present a problem in biomass measurement. They are usually 
found near the base of the crown, where the shade from the leaves higher up has 
led	to	loss	of	leaves	from	the	branch.	Eventually	dead	branches	are	shed	by	the	tree	
but, if they are still attached to the tree at the time of measurement, it is usually con-
sidered appropriate to include them as part of the tree biomass. Such branches, and 
indeed branches with only a few leaves left, may have to be measured and sampled 
separately from other branches.
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Often, there are problems near the tip of the tree. For many species, it is difficult 
to identify what constitutes the main stem where many small branches are growing 
near	the	tip.	It	may	be	necessary	to	treat	the	tip	region	separately,	cutting	it	off	and	
weighing all its leaves and branches, perhaps taking a sub-sample only away for 
drying.

7.2.2 Stems

Biomass	of	a	tree	stem	is	usually	determined	by	measuring	stem	volume	by	sec-
tional measurement (Sect. 5.3). To convert volume to biomass, stem wood density 
must then be determined also.

Stem wood density varies both along the length of tree stems and across its 
radius. For biomass estimation, some average density for the whole stem is 
required. Usually, a sample of stem discs, each a few centimetres thick, is cut from 
the stem at varying distances along it. Mathematically formal sampling strategies 
are sometimes used to determine the points along the stem at which the discs are 
taken	(Valentine	et	al.	1984).	In	the	laboratory,	the	volume	of	each	disc	is	measured	
(by water immersion or by measuring its diameter and thickness) before it is dried. 
The disc is then oven-dried and weighed. This gives the basic density of wood, the 
oven-dry weight of wood per unit fresh volume. The average of all the disks is used 
as an average for the whole stem.

7.2.3 Roots

Root biomass measurement is vastly more difficult than measurement of the above-
ground tree parts. The problems include the difficulties of physical excavation of 
roots from the soil and the inability to identify whether a root belongs to the tree 
being measured, is part of the overlapping root system of a neighbouring tree or is a 
root from an understorey species. These difficulties can never be solved completely. 
Thus, it is inevitable that root biomass measurements will tend to be less precise 
than above-ground biomass measurements.

One method of measuring root biomass is to undertake a full excavation of the 
soil around the stump of a tree. A trench might be dug around the stump with a 
back-hoe,	at	a	distance	(perhaps	about	1–2	m)	from	the	tree	and	to	a	depth	(perhaps	
about	1	m)	within	which	it	is	judged	most	of	the	roots	of	the	tree	are	located.	Hand	
tools and, perhaps, water or air pressure equipment or sieves would then be used to 
manually sift through the soil, finding and extracting the roots; obviously, this is a 
very	 labour	 intensive	 and	 tedious	 task.	Di	 Iorio	 et	 al.	 (2005)	gave	 an	 interesting	
example of such a major extraction of roots of downy oak (Quercus pubescens) trees 
in	Italy,	where	they	measured	also	the	three-dimensional	position	of	the	roots	they	
were	extracting.	Peichl	and	Arain	(2007)	attempted	to	estimate	the	accuracy	of	their	

10.1007/_7


biomass measurements when they excavated the roots in stands of white pine 
(Pinus strobus)	in	Canada.

The work involved in root excavation can be reduced by taking soil core sam-
ples around the stump. Usually, the stump itself will have been pulled out with a 
machine,	 removing	 with	 it	 as	 many	 large	 roots	 as	 possible.	 Cores	 may	 then	 be	
taken, with a hand or machine auger, to sample the distance and depth within which 
it is believed the roots will lie. The cores are usually taken to the laboratory to sort 
the roots from the soil.

It	 is	 often	 desired	 to	 distinguish	 between	 coarse	 and	 fine	 roots.	 Coarse	 roots	
include the large, strong, woody roots which extend immediately out from the base 
of the tree and anchor it firmly in the ground. An extensive web of smaller coarse 
roots	ramifies	from	these	larger	roots.	Coarse	roots	act	also	as	part	of	the	transport	
system	of	water	and	nutrients	 through	 the	 tree.	Water	and	nutrients	are	 taken	up	
from the soil by fine roots and pass through the wood of the coarse roots, the stem 
and	the	branches	up	to	the	leaves.	Wood	consists	mainly	of	dead	tissue	and	water,	
with nutrients dissolved in it, can pass through the empty, dead wood cells; these 
are joined to each other by holes, to make a system of what can be thought of as 
hollow pipes right up the whole length of the tree.

Fine roots occur at the extremities of the coarse root system and consist of live 
tissue, capable of taking in water and nutrients from the soil. They have a limited 
lifespan,	which	can	be	as	short	as	a	few	months.	When	they	die,	they	become	part	
of the organic matter of the soil and are eventually broken down by bacteria and 
fungi, so the nutrients they contain become available again in the soil for re-use by 
the tree. New fine roots then develop in their place.

When	excavating	roots,	it	is	very	difficult	to	determine	exactly	where,	along	its	
length,	a	fine	root	starts	to	develop	wood	and	become	a	coarse	root.	In	the	measure-
ment of the biomass of the root, it is common to make the rather arbitrary decision 
that fine roots are those less than about 2 mm in diameter and anything larger is a 
coarse	root.	It	is	often	difficult	to	tell	whether	a	fine	root	is	still	alive	or	dead;	often	
its colour and its strength when pulled can be used to distinguish live from dead 
root	tissue	(Vogt	et	al.	1998).

It	is	often	desired	to	measure	both	the	biomass	and	the	turnover	rate	of	fine	roots	
without felling a tree and excavating its root system. The three main techniques 
used	to	do	so	are	(Vogt	et	al.	1998):

•	 Soil	coring	–	if	the	fine	root	biomass	is	measured	in	a	series	of	soil	cores	taken	
at several times during a year, their turnover rate can be estimated. Lee et al. 
(2004)	give	an	interesting	example	of	the	use	of	soil	cores	to	produce	a	map,	at	
quite fine scale, of the fine root biomass distribution around individual trees in 
a conifer forest in north-western USA

•	 Ingrowth	cores	–	a	mesh	 sleeve,	 containing	 root	 free	 soil,	 is	 inserted	 into	 the	
hole	left	by	removing	a	soil	core.	Periodic	measurement	of	the	biomass	of	live	
and dead fine roots which appear in such sleeves, as roots grow into them, gives 
estimates of both their biomass and turnover rate

•	 Minirhizotrons	 –	 these	 are	 transparent	 tubes	 inserted	 into	 the	 ground.	 Using	
mini-cameras or other electronic viewing devices to look down the tubes, 
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recordings are made of fine roots as they grow around the outside of the tube 
and are visible at its surface. Flat glass plates inserted in the soil may be used 
also	 and	 the	 growth	 of	 roots	 along	 the	 glass	 surface	 recorded.	 Coupled	 with	
biomass measurements made from cores, this provides information from which 
fine root turnover rates may be determined.

Many refinements of these techniques of both coarse and fine root measurement 
have been tested from time to time for various species in many different soil 
circumstances.	Works	such	as	Vogt	et	al.	(1998),	Bengough	et	al.	(2000),	Snowdon	
et	al.	(2002)	or	Danjon	and	Reubens	(2008)	should	be	consulted	before	root	biomass	
measurements are attempted. So difficult is root measurement, that a substantial 
proportion may be missed; this has often led to the under-estimation of root biomass 
by	 perhaps	 as	 much	 as	 30–40%	 (Robinson	 2004)	 or	 to	 otherwise	 inadequate	
estimates	(Mokany	et	al.	2006).

7.2.4 Carbon Content of Biomass

As mentioned earlier (Sects. 1.2 and 7.1), concerns about global warming have led 
to considerable interest in determining how much of plant biomass is carbon. Direct 
measurement of the amount of carbon in plant biomass is a special laboratory process. 
It	 involves	 grinding	 samples	 of	 the	 dried	 biomass	 to	 a	 fine	 powder,	 burning	 the	
samples and measuring the amount of carbon dioxide given off, using a complex 
laboratory instrument known as a mass spectrometer, which ‘weighs’ atoms or 
molecules. Knowing the weight of the original sample, the proportion of it which 
was carbon can then be determined.

Table 7.1 lists numerous results of direct measurements of the carbon content of 
the	oven-dry	biomass	of	 trees.	Whilst	 the	 results	 vary	 in	 the	 range	36–61%,	 the	
carbon	content	 is	usually	close	 to	50%	of	 the	biomass	and	generally	varies	 little	
between species or in different parts of the tree.

Sometimes the amount of carbon stored in the biomass is reported as an equivalent 
amount of carbon dioxide, which the tree has removed from the atmosphere.  
The conversion from carbon to carbon dioxide equivalent is done simply by multiply-
ing	the	carbon	amount	by	3.67,	this	being	the	ratio	of	the	weight	of	a	molecule	of	
carbon dioxide to the weight of an atom of carbon.

7.3 Above-Ground Biomass Estimation Functions

Given the difficulties involved with direct measurement of the biomass of the tree, 
it is not surprising that attempts have been made to develop functions to allow tree 
biomass estimation from simple measured characteristics of standing trees, such as 
their stem diameter and height. As a part of the research on climate change, the 
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Table 7.1 The proportion of oven-dry biomass which is carbon, as measured in various tree 
parts for various tree species

Species Carbon	proportion	(%) Reference

Above –ground
Pinus taeda 49 Kinerson	et	al.	(1977)
Populus spp. 47 Deraedt	and	Ceulemans	(1998)
Leaves
Abies balsamea 53 Xing	et	al.	(2005)
Acacia decurrens 53 Gifford	(2000)
Acacia melanoxylon 52 Gifford	(2000)
Callitris spp. 54 Gifford	(2000)
Eucalytpus spp. 50–55 Gifford	(2000)
Exocarpus cupressiformis 52 Gifford	(2000)
Pinus radiata 45–53 Gifford	(2000)
Branches
Acacia decurrens 48 Gifford	(2000)
Acacia melanoxylon 49 Gifford	(2000)
Eucalytpus spp. 43–48 Gifford	(2000)
Exocarpus cupressiformis 47 Gifford	(2000)
Pinus radiata 50–56 Gifford	(2000)
Branches and stem
Abies balsamea 52 Xing	et	al.	(2005)
Picea abies 49 Sandström	et	al.	(2007)
Pinus sylvestris 50 Sandström	et	al.	(2007)
Stem wood
Acacia decurrens 48 Gifford	(2000)
Acacia melanoxylon 48 Gifford	(2000)
Callitris glauca 53 Ximenes	et	al.	(2008)
Callitris spp. 52 Gifford	(2000)
Corymbia maculata 49 Ximenes	et	al.	(2008)
Eucalyptus obliqua 50 Ximenes	et	al.	(2008)
Eucalyptus pilularis 51 Ximenes	et	al.	(2008)
Eucalytpus spp. 40–54 Gifford	(2000)
Exocarpus cupressiformis 50 Gifford	(2000)
Pinus radiata 51 Ximenes	et	al.	(2008)
Pinus radiata 48–61 Gifford	(2000)
Bark
Acacia decurrens 55 Gifford	(2000)
Acacia melanoxylon 52 Gifford	(2000)
Callitris spp. 50 Gifford	(2000)
Eucalyptus obliqua 48 Ximenes	et	al.	(2008)
Eucalyptus pilularis 51 Ximenes	et	al.	(2008)
Eucalytpus spp. 38–51 Gifford	(2000)
Exocarpus cupressiformis 54 Gifford	(2000)
Pinus radiata 58 Ximenes	et	al.	(2008)
Pinus radiata 45–61 Gifford	(2000)
Roots
Abies balsamea 50 Xing	et	al.	(2005)
Fine roots
Populus spp 36–43 Al	Afas	et	al.	(2008)
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development of such functions has expanded greatly since the publication of the first 
edition	of	 this	book	 in	2004.	These	 functions	 fill	 the	same	role	 for	 the	estimation	of	
biomass	as	the	functions	discussed	in	Chap.	6 do for tree stem volume estimation.

Perhaps	most	commonly,	the	basis	of	biomass	estimation	for	a	given	species	in	
a given part of the world is a function which estimates the above-ground biomass 
of an individual tree (its stem plus branches and leaves). The functional form used 
most commonly for this predicts oven-dry, above-ground biomass of an individual 
tree (B

A
, tonne) from its diameter at breast height over bark (D, cm) as

 B
A
 = αDb,	 (7.1)

where a and b are parameters. There are many examples of the use of this function 
for	many	different	tree	species	around	the	world	(Freedman	1984;	Ter-Mikaelian	and	
Korzukhin	1997;	Eamus	et	al.	2000;	Burrows	et	al.	2001;	Saenger	2002;	Jenkins	et	
al.	2003;	Pérez	Cordero	and	Kanninen	2003;	Specht	and	West	2003;	Van	Camp	et	al.	
2004;	 Xiao	 and	 Ceulemans	 2004a;	 Hamilton	 et	 al.	 2005;	 Montagu	 et	 al.	 2005;	
Kajimoto	et	al.	2006;	O’Grady	et	al.	2006;	Wang	2006;	Zerihun	et	al.	2006;	Johansson	
2007;	Liddell	et	al.	2007;	Rock	2007;	Case	and	Hall	2008;	Paul	et	al.	2008;	Ung	et	
al.	2008).	Even	in	cases	of	multi-stemmed	trees,	when	each	stem	is	considered	to	be	
a separate tree, (7.1)	has	been	found	effective	(Hamilton	et	al.	2005).

Functions, such as (7.1), that relate plant biomass to one or more other variables 
that reflect the size of the plant (such as its stem diameter or height) are often called 
allometric relationships. The term allometry means ‘the relationship between part of 
an	organism	and	its	whole’.	Several	authors	(Causton	1985;	Parresol	1999;	Verwijst	
and	Telenius	1999)	have	reviewed	the	use	of	allometric	functions	for	biomass	estima-
tion.	Considerable	 care	 is	 required	 in	 applying	 regression	 analysis	 (Sect.	 6.2.1) to 
obtain	values	for	the	parameters	of	allometric	relationships	(Bi	et	al.	2001).

Zianis	and	Mencuccini	(2004)	have	suggested	that	it	may	be	necessary	only	to	
measure directly the biomass of smaller trees in a patch of forest to obtain data 
which	are	adequate	to	fit	such	relationships.	If	this	can	be	confirmed	through	addi-
tional research, it means that much of the great effort required to fell and measure 
the biomass of very large trees could often be avoided.

Studies around the world have found that (7.1) is usually a very adequate bio-
mass function, when it is developed and used locally. That is, it is satisfactory when 
it is derived using measured biomass data at a particular time and at a particular 
site, and is then used to predict biomasses of other trees at the same time and site. 
Of course, this is rather restrictive and researchers have been seeking biomass esti-
mation functions which can be applied much more generally, to trees at different 
ages, to a range of species and to trees which appear spread over some geographical 
region of considerable size.

An	example	where	this	was	done	successfully	comes	from	Jenkins	et	al.	(2003).	
They summarised results from many North American studies, all of which used 
(7.1), for a wide range of both hardwood and softwood species from many different 
locations	across	the	USA	and	Canada.	They	identified	10	different	species	groups,	
in each of which they considered the various species should have similar character-
istics and to which a common biomass function might apply (that is, with the same 
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values of both parameters a and b in 7.1). Figure 7.1 illustrates the ten different 
functions they derived; the considerable differences between the functions for the 
different	species	groups	are	obvious	there.	However,	Jenkins	et	al.	were	confident	
that these functions could be used to predict tree biomasses reliably, right across 
North America. Similar results have been obtained for other species in other parts 
of	the	world	(Muukkonen	2007;	Rock	2007;	Ung	et	al.	2008).

Whilst	these	studies	have	had	some	success	in	applying	(7.1) across a range of 
species and geographical regions, other authors have attempted to develop general 
biomass estimation functions by testing empirically functions other than (7.1)	and/
or by the inclusion of tree variables other than stem diameter in their function. 
Empirical	testing	involves	trial-and-error	testing	of	many	possible	functions,	until	
one is found that fits the data most appropriately.

An	example	of	 this	comes	 from	Williams	et	al.	 (2005).	They	were	concerned	
with estimating the above-ground biomass of trees of a variety of tree species 

1

6

3

4

5

2

7

8
9

10

0.0

0.5

1.0

1.5

0 10 20 30 40 50

A
bo

ve
-g

ro
un

d 
bi

om
as

s 
(t

on
ne

)

Diameter (cm)

Fig. 7.1 Above-ground oven-dry biomass in relation to tree stem diameter at breast height over 
the	bark,	as	defined	by	biomass	estimation	functions	developed	by	Jenkins	et	al.	(2003),	for	various	
North American species groups. Numbers denote the functions for the species groups. Hardwood 
groups were 1–aspen/alder/cottonwood/willow	 (0.110,	 2.39),	 2–soft	 maple/birch	 (0.148,	 2.37),	
3–mixed	 hardwood	 (0.084,	 2.48),	 4–hard	 maple/oak/hickory/beech	 (0.134,	 2.43).	 Softwood	
groups were 5–cedar/larch	(0.131,	2.26),	6–Douglas	fir	(0.107,	2.44),	7–true	fir/hemlock	(0.079,	
2.48),	8–pine	(0.079,	2.43),	9–spruce	(0.125,	2.33).	Group	10 was a mixed hardwood and soft-
wood	group	of	species	which	grow	in	woodlands	(0.489,	1.70).	The	values	in	brackets,	after	each	
species group, are the values of a and b, respectively, in (7.1), with B

A
 in kg and D in cm (drawn 

using	information	from	Table	4	of	Jenkins	et	al.	2003)
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(mainly eucalypts) across the vast areas of woodland forests, which cover tropical 
and	subtropical	northern	Australia.	They	had	measured	tree	biomasses	at	20	geo-
graphically widespread locations in these forests. They tested empirically eight 
different	functions,	which	included	tree	diameter	at	breast	height	and/or	tree	height.	
They selected, as the best, the function

 B
A
	=	0.0001275D2.1735H  0.1362ln	(H),	 (7.2)

where H is tree height (m) and ln(H) denotes the natural logarithm of H (natural 
logarithms use as their base the mathematical constant known as ‘e’; its value is 
approximately	2.7183).	This	function	seemed	to	predict	above-ground	biomasses	
adequately for any tree of the many species at many sites for which they had data.

Williams	et	al.	found	there	was	an	advantage	by	including	both	tree	diameter	and	
height in their function, rather than diameter alone as in (7.1).	In	working	with	other	
species and other functions in other parts of the world, other researchers have also 
used	both	 tree	diameter	and	height	 (Schmitt	and	Grigal	1981;	Kumar	and	Tewari	
1999;	Saenger	2002;	Carvalho	and	Parresol	2003;	Pitt	and	Bell	2004;	Zerihun	and	
Montagu	2004;	Khan	et	al.	2005;	Saint-André	et	al.	2005;	Brandeis	et	al.	2006;	Cole	
and	Ewel	2006;	Cienciala	 et	 al.	 2006;	Williams	and	Gresham	2006;	Dillen	 et	 al.	
2007;	Peichl	and	Arain	2007;	Pajtík	et	al.	2008;	Paul	et	al.	2008;	Ung	et	al.	2008).	
However, sometimes there has been found to be little advantage from the inclusion 
of	height	(Ter-Mikaelian	and	Korzukhin	1997;	Burrows	et	al.	2001;	Kajimoto	et	al.	
2006;	Wang	2006)	and	 there	may	even	be	a	disadvantage	 (Montagu	et	 al.	2005).	
Occasionally functions have been used in which diameter is the only prediction vari-
able, but which have a form different from that of (7.1)	(Droppelmann	and	Berliner	
2000;	Chambers	et	al.	2001;	Montagu	et	al.	2005;	Ximenes	et	al.	2006;	Dillen	et	al.	
2007).	Sometimes	other	variables,	which	reflect	environmental	differences	between	
different	sites,	have	been	included	in	the	function	(Droppelmann	and	Berliner	2000;	
Carvalho	 and	 Parresol	 2003;	 Pérez	 Cordero	 and	 Kanninen	 2003;	 Xiao	 and	
Ceulemans	2004a;	Hamilton	et	al.	2005;	Saint-André	et	al.	2005;	Cienciala	et	al.	
2006;	Cole	and	Ewel	2006;	Peichl	and	Arain	2007;	Paul	et	al.	2008).

Pilli	et	al.	(2006)	seem	to	have	made	a	further	advance	in	the	development	of	
biomass	estimation	functions	which	apply	across	a	variety	of	species	and/or	a	range	
of environmental circumstances. Their approach was based on theory which con-
siders both the engineering requirement that tree stems be big and strong enough to 
remain standing, given the weight they carry and the wind forces to which they are 
subjected, as well as the biological need for the stem to transport, to the leaves, 
water taken up from the soil by the roots. This theory will not be discussed in detail 
here,	but	it	led	Pilli	et	al.	to	suggest	that	the	diameter	of	the	stem	of	a	tree,	the	basic	
density (Sect. 7.2.2) of the wood within the stem and the position of the tree within 
the hierarchy of tree sizes in the forest should all be important in determining the 
above-ground biomass of a tree.

Pilli	et	al.	collated	a	large	data	set	of	biomass	measurements,	collected	by	many	
different researchers for many hardwood and softwood species scattered right 
around the northern hemisphere. Using a slight modification of (7.1), they found 
they could estimate individual oven-dry tree above-ground biomass as



 B
A
 = exp (a1 + a2r)Db,	 (7.3)

where B
A
 (tonne) and D (cm) are as before, r	(tonne/m3) is the wood basic density 

averaged over the whole stem of the tree and a
1
, a

2
 and b are parameters.

This	 function	 appeared	 to	 apply	 satisfactorily	 over	 all	 the	 species	 Pilli	 et	 al.	
considered and over all regions from which their data set had been collected. However, 
they found that the parameter values differed appreciably, depending on the position 
of the tree in the size hierarchy of trees in the forest where it was growing. They 
developed	a	method	to	determine	that	position	for	any	tree.	It	involves	measuring	
both the diameter and height of the trees in the forest concerned. Using quite complex 
methods, which will not be described in detail here, this information is used to allocate 
any	tree	into	one	of	three	size	classes,	based	on	its	diameter,	classes	which	Pilli	et	al.	
term	‘juvenile’,	‘adult’	or	‘mature’.	I	consider	these	terms	somewhat	inappropriate,	
since they imply that the trees are of different ages, juvenile being young and 
mature	being	much	older.	That	 is	not	necessarily	 the	case	and	I	prefer	 the	 terms	
‘smaller’ ‘intermediate’ and ‘larger’, respectively, terms suggesting the position of the 
trees in the forest size hierarchy.

Table 7.2 shows the parameter values of (7.3),	as	determined	by	Pilli	et	al.	for	
trees of different positions in the size hierarchy in the forest. There were a number 
of	tree	species	which	were	common	to	the	data	sets	used	by	Jenkins	et	al.	(2003)	
and	Pilli	et	al.	Figure	7.2	shows	an	attempt	to	compare	Pilli	et	al’s	functions	with	
those	of	Jenkins	et	al.	for	three	of	those	common	species,	the	hardwood,	white	oak	
(Q. alba) and two softwoods, Douglas fir (Pseudotsuga menziesii) and Norway 
spruce (Picea abies). There appears to be quite good agreement between the two 
sets	of	functions,	at	least	when	Pilli	et	al’s	functions	for	larger	trees	are	used.	There	
is	rather	poor	agreement	if	Pilli	et	al’s	functions	for	smaller	or	intermediate	sized	
trees are used (not shown on figure): it is probable that the data sets used to build 
Jenkins	et	al’s	functions	were	dominated	by	mature	forests	where	larger	trees	would	
be most common.

Pilli	et	al’s	functions	are	quite	general	and	appear	to	apply	satisfactorily	across	
an extraordinarily wide range of both hardwood and softwood species. However, 
the data set they used was dominated by species from the temperate regions of the 
northern	hemisphere.	 It	 remains	for	 their	 functions	 to	be	 tested	with	data	 from	a	
range of species from both tropical forests and temperate, southern hemisphere 
forests.	If	 this	can	be	done	satisfactorily,	 their	functions	might	then	be	used	with	
confidence throughout the forests of the world. To do so requires that the height and 

Table 7.2 Parameter	values	of	(7.3),	to	predict	tree	above-ground	oven-dry	biomass	(tonne)	from 
stem	wood	basic	density	(tonne/m舉3) and tree diameter at breast height over bark (cm), as determined 
by	Pilli	et	al.	(2006)	(but	for	the	units	used	here),	for	individual	trees	of	different	positions	in	the	
size hierarchy of trees of any particular species in a forest

Tree size a
1

a
2

b

Smaller −8.55 0 2.08
Intermediate −10.42 1.27 2.64
Larger −10.03 1.11 2.51
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diameter at breast height of the trees in the forest concerned be measured together 
with the basic density of the stem wood of each species occurring in the forest. 
Zianis	(2008)	has	confirmed	that	the	principles	of	Pilli	et	al’s	approach	show	promise	
for the development of widely applicable biomass functions.

7.4 Biomass Estimation Functions for Tree Parts

Development of functions to estimate above-ground biomass of individual trees 
(Sect. 7.3) has received rather more attention than functions to estimate biomasses 
of other tree parts (leaves, branches, stems, roots etc.) for two reasons. Firstly, when 
obtaining data with which to build biomass estimation functions, it is far more common 
to measure above-ground biomass only, because root biomass is so much more diffi-
cult to measure (Sect. 7.2). Secondly, research emphasis has been on the estimation 
of the amounts of carbon sequestered by whole forests through photosynthesis, so has 
concentrated on functions which estimate total biomass, rather than biomass of the 
various parts of the tree.

Nevertheless, in scientific studies of tree growth behaviour, it is common to wish 
to know how the different parts of the tree develop with time. Thus, some attention 
has been paid to the development of functions to estimate the biomass of the various 
tree parts.
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Fig. 7.2 Three	of	the	tree	biomass	estimation	functions	of	Jenkins	et	al.	(2003)	(solid lines), for 
species groups numbered as in Fig. 7.1.	Corresponding	functions	(dotted lines)	determined	by	Pilli	
et	al.	(2006)	for	‘larger’	trees	of	three	particular	species,	each	of	which	was	a	member	of	the	corre-
sponding	Jenkins	et	al’s	group.	The	three	species	were	(with	the	stem	wood	basic	density,	tonne/m3, 
assumed	by	Pilli	et	al.	in	parentheses)	4−Q. alba	(0.75),	6−P. menziesii	(0.50)	and	9−P. abies	(0.45)



7.4.1 Allometric Functions

Allometric functions, of the same form as (7.1), have been used to estimate the 
biomasses of various parts of individual trees, with the biomass of the part concerned 
replacing	B

A
 in the equation. Figure 7.3 shows a typical example, in this case for 

sugar gum (Eucalyptus cladocalyx) being grown in plantations in southeastern 
Australia	(Paul	et	al.	2008).	In	this	case,	the	biomass	function	developed	for	each	
part of the tree seemed to predict biomass satisfactorily across the three plantation 
sites	from	which	Paul	et	al.	had	collected	data,	where	the	plantation	age	varied	over	
the	range	5–75	year.

Paul	et	al.	determined	also	a	function	to	predict	above-ground	biomass	in	their	
plantations, using (7.1).	For	interest,	 this	function	and	that	for	large	trees	of	Pilli	 
et	al.	(2006)	are	compared	in	Fig.	7.3. There seems reasonable agreement between 
Paul	et	al’s	and	Pilli	et	al’s	functions;	as	discussed	in	Sect.	7.3,	Pilli	et	al’s	function	
shows potential for general use for any tree species anywhere in the world.

Of course, if the biomasses of various parts of a tree have been estimated, they 
may	be	summed	to	give	the	total	biomass	of	 the	tree.	So,	 in	Paul	et	al’s	case,	
the estimates for leaves, the stem and branches might be summed to give the above-
ground	 biomass	 of	 the	 tree.	 When	 this	 is	 done,	 it	 is	 found	 that	 the	 predicted	
above-ground biomass does not agree with that estimated using the function they 
developed	 to	predict	 the	above-ground	biomass	directly.	 In	Paul	 et	 al’s	 case,	 the	
discrepancy	is	quite	small.	For	example,	for	a	47	cm	diameter	tree,	the	above-ground	
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Fig. 7.3 For various parts of the tree as marked, the solid lines show the relationship between oven-dry 
biomass and tree diameter, as determined for E. cladocalyx	by	Paul	et	al.	(2008).	The	dashed line 
shows	the	relationship	for	above-ground	biomass	from	the	function	of	Pilli	et	al.	(2006)	for	‘larger’	
trees (7.3, Table 7.2);	to	obtain	that	line	required	use	also	of	the	function	determined	by	Paul	et	al.	
to estimate stem wood basic density of E. cladocalyx trees from their stem diameter
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biomass	estimated	by	summing	the	estimates	for	the	parts	is	2.15	tonne,	whilst	that	
obtained	directly	from	the	above-ground	biomass	function	is	2.12	tonne.	However,	
such discrepancies can be larger, depending on the forest circumstances. They arise 
because none of the functions is an exact predictor of biomass; each function gives 
an estimate only. Mathematical statistical techniques have been developed to avoid 
this problem, and force estimates for individual parts to sum exactly to the value 
estimated	using	the	function	which	predicts	the	total	directly	(Parresol	1999;	Bi	et	al.	
2001;	Carvalho	and	Parresol	2003).	These	techniques	only	ensure	that	the	sum	of	
the estimates made for the parts equals the estimate made directly for the total: they 
still all remain estimates, albeit with consistency across all the functions involved.

There are many other examples where allometric functions have been developed 
to estimate biomasses of different parts of trees. These include cases where a function 
was determined from a sample of trees in one locality, for local use, or where it was 
attempted to develop functions which applied to a variety of species over wide 
geographical	 regions	 (Ter-Mikaelian	 and	 Korzukhin	 1997;	 Droppelmann	 and	
Berliner	 2000;	 Burrows	 et	 al.	 2001;	 Saenger	 2002;	 Jenkins	 et	 al.	 2003;	 Pérez	
Cordero	 and	 Kanninen	 2003;	 Pitt	 and	 Bell	 2004;	 Xiao	 and	 Ceulemans	 2004a;	
Zerihun	and	Montagu	2004;	Kajimoto	et	al.	2006;	Wang	2006;	Zerihun	et	al.	2006;	
Muukkonen	2007;	Coll	et	al.	2008;	Coyle	et	al.	2008;	Holdaway	et	al.	2008;	Levia	
2008;	Paul	et	al.	2008;	Sochacki	et	al.	2007;	Ung	et	al.	2008;	Wutzler	et	al.	2008).	
Some researchers have found, empirically, that inclusion of the characteristics of 
the tree other than stem diameter (such as tree height or the length of the crown 
of the tree) have improved the function, whilst others have found diameter by itself 
was	adequate	(Burrows	et	al.	2001;	Carvalho	and	Parresol	2003;	Pérez	Cordero	and	
Kanninen	 2003;	 Pitt	 and	 Bell	 2004;	 Xiao	 and	 Ceulemans	 2004a;	 Zerihun	 and	
Montagu	2004;	Khan	et	al.	2005;	Brandeis	et	al.	2006;	Cienciala	et	al.	2006;	Cole	
and	Ewel	2006;	Massada	et	al.	2006;	Tobin	et	al.	2006;	Paul	et	al.	2008;	Wutzler	
2008).	Sometimes	a	functional	form	different	from	the	allometric	form	of	(7.1) has 
been	 used	 (Jonckheere	 et	 al.	 2005a;	 Saint-André	 et	 al.	 2005;	 Xing	 et	 al.	 2005;	
Kajimoto	et	al.	2006;	Williams	and	Gresham	2006;	Dillen	et	al.	2007;	Muukkonen	
2007;	Pajtík	et	al.	2008;	Paul	et	al.	2008).

7.4.2 Biomass Expansion Factors

Over the second half of the twentieth century, many tree stem volume functions 
(Sect. 6.2) have been developed throughout the world, for different species of tree 
growing under a wide range of environmental circumstances. A second form of 
biomass estimation function for individual tree parts exploits the availability of 
these	volume	functions.	In	these	cases,	the	ratio	of	the	biomass	of	one	or	more	parts	
of a tree to the stem volume of the tree is determined. Such a ratio is known as a 
biomass expansion factor; multiplication of stem volume, determined using the 
volume function, by the biomass expansion factor provides an estimate of biomass 
for the relevant part of a tree.

10.1007/_7


An	example	can	be	found	in	Peichl	and	Arain	(2007),	for	native	forests	of	white	
pine (P. strobus)	in	Canada.	They	measured	biomasses	of	the	various	above-ground	
parts of trees of varying ages in the forests. They found that individual tree biomass 
expansion factors for leaves, branches and roots varied with forest age and developed 
empirical functions to relate those factors to age. The results are illustrated in Fig. 7.4. 
Other	examples	can	be	found	in	Rytter	(2006)	and	Pajtík	et	al.	(2008).

7.4.3 Leaves

Whilst	the	methods	described	in	Sects.	7.4.1 and 7.4.2 do offer functions to estimate 
tree leaf biomass, it is often found that the estimates they provide are not as good as 
might be desired. This reflects the biological circumstances of the leaves in forests.

Tree leaf biomass tends to increase with age, as a young tree grows over its first 
few years of life. However, eventually there reaches a point in the life of a forest 
when the leaf biomass over the forest as a whole reaches a more or less constant 
value. This value is determined principally by the availability to the trees of the 
water and nutrients from the soil at the site.

Once this point is reached, the stems (hence above-ground biomass), of indi-
vidual trees will continue to increase in size with time, whilst the biomass of the 
leaves will remain more or less steady. This situation will become even more 
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Fig. 7.4 Biomass	expansion	 factors,	 as	a	 function	of	 the	age	of	 the	 tree,	 for	different	parts	of	
individual trees of P. strobus	in	forests	of	southern	Ontario,	Canada.	Multiplication	of	tree	stem	
wood volume (m3/ha)	by	 the	biomass	expansion	 factor	will	give	an	estimate	of	 the	biomass	of	
each	part	of	the	tree	(derived	from	information	in	Table	6	of	Peichl	and	Arain	2007)
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 complicated, as the competitively more successful trees in a stand outgrow their less 
successful rivals. The leaf biomass of a less successful tree will then decline gradu-
ally with age until the tree dies, whilst the leaf biomass of a more successful tree 
will	increase.	Examples	of	the	effects	of	different	competitive	pressures	on	tree	foli-
age	biomasses	can	be	found	in	Baldwin	et	al.	(2000)	and	Holdaway	et	al.	(2008).

Given this complexity, it is obvious that it will be difficult to build biomass functions 
generally to predict individual tree leaf biomasses over the whole life of the forest.  
At any one age, simple allometric equations (Sect. 7.4.1) have been used successfully 
for this purpose, but it is to be expected that the parameter values of these functions 
would change as the trees age and as their position in the stand alters. This is not 
always so, as the example in Fig. 7.3 illustrates, where the functions developed 
applied satistfactorily across a wide range of plantation ages. Nevertheless, there are 
many	cases	where	it	is	so.	For	example,	Holdaway	et	al.	(2008)	found	variation	with	
age in natural stands of mountain beech (Nothofagus solandri var. diffortioides) in 
New	Zealand.	For	Sitka	spruce	(Picea sitchensis)	in	Ireland,	where	stand	age	varied	
over	 the	 range	 10–46	 year,	 Tobin	 et	 al.	 (2006)	 needed	 to	 include	 all	 of	 tree	 stem	
diameter, the length of the crown and the stocking density (number of trees per unit 
ground area) of the forest in which it occurred as variables in their biomass estimation 
function.	Grote	and	Reiter	(2004)	related	the	crown	biomass	of	individual	European	
beech (Fagus sylvatica) and Norway spruce (P. abies) trees to the competitive 
influence the trees of the forest exerted on each other. There are other examples of 
leaf biomass functions which include various tree or stand parameters to allow for 
changes in age or other environmental circumstances of the tree (Monserud and 
Marshall	1999;	Pérez	Cordero	and	Kanninen	2003;	Pitt	and	Bell	2004).

As mentioned in Sect. 7.2.1, it is often the area of leaves that is of interest, rather 
than	their	biomass.	Arias	et	al.	(2007)	and	Macfarlane	et	al.	(2007a)	developed	leaf	
area estimation functions, using (7.1) with leaf area replacing biomass, for various 
species	in	Costa	Rica	and	Australia,	respectively.

A quite different tree variable, the cross-sectional area of sapwood in the stem, 
has	been	found	particularly	useful	in	developing	leaf	biomass	functions.	Water	is	
transported from the roots, up through the sapwood to the leaves. Sapwood occurs 
in the outer part of the stem cross-section and consists of empty, dead cells through 
which water can pass. Heartwood occurs nearest to the centre of the stem and its 
cells are blocked by resins and other substances, so water can pass through it no 
longer. Sapwood is continually converted to heartwood throughout the life of the 
tree. However, the area of the sapwood in the stem at any time must be sufficient 
to allow passage of the volume of water necessary to supply the needs of the leaves. 
Thus, it can be expected that there will be a close relationship between stem sap-
wood area and the biomass of the leaves carried on the tree.

Stem	sapwood	area	is	usually	quite	easy	to	measure.	Coring	devices	are	avail-
able which can be screwed into the stem of a standing tree and a core of wood 
removed from it, without harming the tree. These devices are used regularly by 
scientists who study changes in climate by measuring the width of growth rings in 
tree stems, a field of study known as dendrochronology. The width of the sapwood 
can be measured from the stem core and the stem sapwood area then determined, 
knowing the diameter of the stem. There are numerous examples of functions 



developed	to	predict	tree	foliage	biomass	from	stem	sapwood	area	(Whitehead	et	al.	
1984;	Pothier	et	al.	1989;	West	and	Wells	1990;	Shelburne	et	al.	1993;	Pereira	et	al.	1997;	
Berninger	and	Nikinmaa	1998;	Monserud	and	Marshall	1999;	Medhurst	and	Beadle	
2002;	 Gilmour	 and	 Seymour	 2004;	 Stancioiu	 and	 O’Hara	 2005;	 Xiao	 and	
Ceulemans	2004b;	Kajimoto	et	al.	2006;	Tobin	et	al.	2006).

7.4.4 Roots

There are numerous examples (one is illustrated in Fig. 7.3) where coarse or total 
(coarse plus fine) tree root biomass has been estimated from tree stem diameter at 
breast height using (7.1), with root biomass replacing above-ground biomass 
(Burrows	et	al.	2001;	Kajimoto	et	al.	2006;	Miller	et	al.	2006;	Wang	2006;	Zerihun	
et	al.	2006;	Johansson	2007;	Lavigne	and	Krasowski	2007;	Peichl	and	Arain	2007;	
Vadeboncoeur	et	al.	2007;	Coll	et	al.	2008;	Paul	et	al.	2008),	or	using	other	functions	
which	include	stem	diameter	only	(Tatarinov	et	al.	2008).	Sometimes	tree	variables	
other	than	stem	diameter	have	been	included	also	(Cole	and	Ewel	2006;	Sochacki	
et	al.	2007;	Paul	et	al.	2008).

However, when roots are excavated in a forest area, it is difficult to identify to 
which individual tree any particular root belongs (Sect. 7.2.3).	Perhaps	because	of	
this, there has been an emphasis in the development of root biomass functions 
which estimate the root biomass per unit ground area of the forest, rather than the 
root biomass of individual trees. This is the next scale up of measurement to be 
considered in this book (Sect. 1.3); root biomass estimation functions of that nature 
will be discussed in Sect. 8.10.

Fine roots present rather more of a problem than coarse roots. Generally, fine 
roots constitute a small proportion of the total biomass of root systems, perhaps 
tending	to	decline	with	age	to	about	10%	of	total	root	biomass	as	the	forest	matures.	
This can vary widely with different forests in different environmental circum-
stances.	For	example,	Kajimoto	et	al.	 (2006)	 found	 that	 the	 fine	 root	biomass	 in	
Dahurian larch (Larix gmelinii) forests, in the cold, boreal regions of Siberia, made 
up	58%	of	the	total	root	biomass	in	younger	forests	(trees	95–100-years-old)	and	
34%	in	older	forest	(trees	up	to	280-years-old).	However,	the	lifespan	of	fine	roots	
can	be	short	(as	little	as	a	few	months,	e.g.	Jourdan	et	al.	2008;	Gaul	et	al.	2008),	
so they turn over continuously as some die and are replaced by new ones.

Development of functions to estimate the biomass of fine roots of individual trees 
is	far	less	advanced	than	for	other	tree	parts.	However,	Helmisaari	et	al.	(2007)	devel-
oped such a function satisfactorily for trees of Norway spruce (P. abies) and Scots 
pine (P. sylvestris) in native forest stands in Finland; they used (7.1) with fine root 
biomass replacing above-ground biomass. However, they found that trees tended to 
have greater fine root biomasses on sites which were cooler or had less fertile soil; 
thus	the	functions	they	developed	were	site	specific.	Others	(Rytter	1999;	Vanninen	
and	Mäkelä	1999;	Mäkelä	and	Vanninen	2000;	Al	Afas	et	al.	2008)	were	unable	to	
find any relationship between fine root biomass and easily measured tree variables 
and so were unable to develop a biomass function for their cases.
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Chapter 8
Stand Measurement

8.1 Stands and Why They are Measured

Until now, this book has been concerned with measurement of individual trees. 
However, forest owners and managers need to know how much timber or other 
forest products are available in total from their forest estate. This allows them to 
determine the overall value of the estate or to work out how much wood they can 
cut from it year by year and still be sure that the forest will go on producing timber 
forever.

One way to determine the total amount of wood, biomass or other tree products 
in an entire forest is to measure every single tree in it and add up the results. This 
would be an impossibly large task for any but the tiniest patch of forest. Instead, 
methods are used to scale up measurements made of some individual trees in the 
forest to estimate what is available from the whole forest. The concept of scaling 
up was introduced in Sect. 1.3.

The process of scaling up involves two steps. Firstly, measurements are made of 
individual trees in stands. Measurements made of stands are recorded usually on a 
per unit ground area basis, for example, the volume of stem wood per hectare in the 
stand. If the stand is on sloping ground, the area is taken to be the equivalent hori-
zontal ground area. Stand measurements are sometimes recorded also as an average 
for the stand, for example, the average of tree stem diameters.

The second step in scaling up involves measuring many stands scattered through-
out the forest. The information from those many stands is then used to estimate the 
total amount of whatever is being measured across the entire forest. That second step 
is known as forest inventory, which will be considered in detail in Chaps. 9–11.

8.2 Measurements Taken in Stands

The definition of a stand as a more or less homogeneous patch of forest is rather 
loose, in that it does not specify any particular area for the stand. In fact, the 
area will vary greatly, depending on how the person measuring the forest 
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66 8 Stand Measurement

chooses to define ‘homogeneous’ for the forest concerned; this will be a matter 
of  judgement and will reflect the nature of the measurements being made and 
their purpose.

However the stand is defined, it will not usually be the whole stand that is measured. 
Rather, a sample will be selected from it for measurement; that is, a relatively small 
part of it will be measured and the result taken as being representative of the whole 
stand. Often, that part will be a plot: commonly in forestry, such plots have an area 
of 0.01–0.1 ha (100–1,000 m2), the actual area being chosen to suit the forest 
circumstances and the purpose of the measurement. However, as will be discussed 
below, there is at least one other way to measure a stand, which does not involve 
the establishment of a plot.

The measurements made most commonly in stands are:

•	 Tree	age
•	 Stand basal area (tree cross-sectional area at breast height summed over all the 

trees in a stand and expressed per unit ground area)
•	 Stocking	density	(the	number	of	tree	stems	per	unit	ground	area)
•	 Quadratic mean diameter (diameter of the tree of average basal area in the 

stand)
•	 Dominant height (average height of a prescribed number per unit ground area 

of the largest diameter or tallest trees in the stand)
•	 Site	productive	capacity	(defined	in	Sects.	8.7.1 and 8.8)
•	 Volume	 (the	 volume	 of	 the	 stem,	 over	 or	 under	 bark,	 or	 of	 some	 log	 product	

expressed per unit ground area)
•	 Biomass	(the	biomass	of	some	part	of	the	tree	expressed	per	unit	ground	area)
•	 Growth	(the	change	with	time	in	variables	such	as	stand	basal	area,	stand	volume	

or stand biomass).

Many other characteristics of stands can be, and often are, measured. However, 
those listed above are the variables used most commonly in forestry and forest 
science. Each will be discussed in this chapter.

8.3 Age

The age of the trees in a stand is usually most relevant when the stand is even-aged, 
that is, all the trees in the stand regenerated naturally (in native forest) or were 
planted (in a plantation) at or about the same time.

Even when a stand in native forest is classed as even-aged, there will have been 
some period of time (months to a year perhaps) over which the trees regenerated 
following a disturbance of the pre-existing forest, which resulted in all its trees 
being removed or dying. That is to say, not all the trees in an even-aged native 
forest will be exactly the same age. For most forestry purposes, these small age 
differences between individual trees are ignored and the age of the native forest 



stand is considered to date from the time most regeneration took place. This is 
often known from historical records. Other techniques may be necessary to 
 determine stand age when the forest history is unknown, such as counting tree rings 
of individual trees.

In the case of plantations, stand age is usually known from planting records. 
Tree seedlings are often 6–12 months old, sometimes older, when they are 
obtained from a nursery and planted out. In most countries, plantations are aged 
from their date of planting. Scientifically, this convention seems to provide 
adequate results for practical purposes, even though it is known that the trees are 
generally older than the age assigned to the plantation. In some European countries, 
plantations are aged from the date of sowing seeds in the nursery. In colder 
regions, seedlings may be raised for up to 2 years in a nursery, so prescribing a 
plantation age by the sowing date may then be rather more realistic biologically 
than using the planting date.

Many native forests are uneven-aged. That is, trees of a wide range of ages 
occur in the forest. This is usual for forests such as rainforests, where a long process 
of succession occurs during the life of the forest. Following a disturbance in such 
forest (due to things such as fire, storm or logging), certain species, which respond 
to the full sunlight conditions created by the disturbance, regenerate and grow 
vigorously. Other species, which are more tolerant of the shade created by the light 
tolerant species, then regenerate and grow slowly in the shade until they eventually 
reach the full sun and ultimately dominate the forest. Such forests contain trees of 
a wide range of ages and it is impossible to assign any particular age to a stand. 
However, it is often useful to know the time since the initial disturbance; this may 
be a useful guide to what stage of development the stand has reached. Lisa and 
Faber-Langendoen (2007) developed a method to define the stage of development 
of uneven-aged forest by measurement of various characteristics of the trees within 
the stand.

8.4 Basal Area

Stand basal area (stem cross-sectional area at breast height summed over all the 
trees in a stand and expressed per unit ground area) is important to forestry 
because, just as tree stem diameter is often well correlated with individual tree 
stem volume (Sect. 6.2.1), stand basal area is often well correlated with stand stem 
volume.

The stand basal area of forests tends to increase with age as the trees grow. It 
varies also with the number of trees in the stand. For young stands, or stands with 
very low stocking density, stand basal area can be close to zero. For old stands and 
stands with high stocking densities, it can exceed 100 m2/ha.

There are two main methods used to measure stand basal area, plot measurement 
and point sampling. These are discussed in the next two sub-sections.
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68 8 Stand Measurement

8.4.1 Plot Measurement

Stand basal area may be determined by positioning a plot of known area, 
somewhere within the stand. The diameters at breast height (over or under bark as 
required) of all the trees in the plot are then measured. The diameters are then converted 
to stem cross-sectional areas, the results summed and divided by the plot area to 
give stand basal area.

There is a general discussion of plot establishment and measurement techniques 
in Sect. 11.6.

8.4.2 Point Sampling

A second method of measuring stand basal area is becoming increasingly important 
in forestry, especially in forest inventory (Chap. 11). In this book, the method will 
be termed point sampling. It is an extraordinarily simple technique, which does not 
require the establishment of a plot. The measurement is made by standing at a 
point, somewhere within the stand, and simply counting certain trees around the 
point, using an instrument which can be as simple as a small stick.

The principle of point sampling is described in Fig. 8.1. This represents a view 
looking vertically down on a stand. Suppose an observer standing at point O is 

Fig. 8.1 Principle of point sampling
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holding horizontally a small, straight stick AB at arm’s length. In the near vicinity 
of the observer are several trees (3 in the diagram, but the number is not important 
to the argument), each with exactly the same diameter at breast height over bark; 
the solid circles numbered 1, 2 and 3 represent the tree stem cross-sections at breast 
height. The centre of the stem cross-section of Tree 1 is positioned at E.

Tree 1 has been positioned deliberately in the figure so that when the observer 
looks past the ends of the stick to breast height on that tree, the ends are aligned 
exactly with the width of the stem, as the observer sees it; that is, lines OAC and 
OBD are both tangents to the circular cross-section of Tree 1, touching its circum-
ference at C and D.

The views the observer would have of Trees 2 and 3, when he or she turns in 
their respective directions, are illustrated also on the figure. Tree 2 is closer to the 
observer than Tree 1, so the stick is not wide enough to cover fully the cross-section 
of the tree as the observer views it; the observer will see the sides of the stem 
projecting past the ends of the stick. Tree 3 is further from the observer than Tree 
1, so the width of the stick will more than cover the width of the stem as the 
observer views it.

Now, suppose all the trees in the vicinity of the observer have the same diameter 
as the three in the diagram. Suppose the observer turns through a full circle at O 
and counts the number of trees he or she sees for which the width of the stick does 
not cover the width of the tree stem (as for Tree 2), or just exactly covers it (as for 
Tree 1). He or she does not count any tree for which the width of the stick more 
than covers the width of the tree stem (as for Tree 3). This means that any tree of 
the same diameter as the 3 trees in the figure, and which is at the same distance or 
closer to the observer than Tree 1, would be included in the count.

Suppose the radius at breast height over bark (the radius is half the diameter) of 
the trees in the figure is r (cm). The radius of Tree 1 is represented by either of the 
lines EC or ED (geometrically, those radii will be perpendicular to the tangents to 
the circle OBD and OAC, respectively). Imagine that as the observer turns around 
at O, he or she sweeps out a circular area, shown by the large dashed circle in the 
figure which is of radius R (m) (the length of the line OE), and counts trees as 
described above. Suppose that during the sweep the observer counts n

r
 trees of 

radius r. Since all those trees are at the same distance or closer than Tree 1, their 
stem centres all lie within that circle of radius R.

By definition, the stand basal area of those n
r
 counted trees (G

r
, m2/ha) is the sum 

of their cross-sectional areas at breast height divided by the ground area they 
occupy. Knowing that the area of a circle is the product of p and the square of its 
radius, it then follows from this definition that

 2 2 2 2
r [( /10,000) ] / [( /10,000) ] / ,r r rG n r R n r R nπ π β= = =  (8.1)

where b = r2/R2. The values 10,000 in this equation simply serve to convert the 
units of measurement (stem radii in centimetres are converted to metres and the 
dashed circle area in square metres is converted to hectares, there being 10,000 
m2 in 1 ha).
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Consider now the right angled triangle EDO (angle EDO is the right angle), 
where ED = r/100 m and EO = R m. Let the angle EOD = θ°, so that

 sin( ) ED / EO ( /100) / .r Rθ = =  (8.2),

Hence, given the definition of b above,

 2 2 2/ 10,000sin ( ).r Rβ θ= =  (8.3)

Now, suppose the stick being held by the observer is of length AB = l
s
 (cm) and is 

being held a distance OF = l
e
 (cm) away from the eye. Consider the right angled 

triangle OFB (angle OFB is the right angle), where FB = l
s
/2 and FO = le. Using 

Pythagoras’ theorem (Appendix D), BO2 = FO2 + FB2, hence BO = 2 2( / 2)s el l+  
Then, since angles FOB and EOD are the same angle θ,

 2 2
s esin( ) FB / BO ( / 2) / ( / 2) .l l lq = = +  (8.4)

Hence, using (8.3) and (8.4),

 2 2 2
s s e10,000( / 2) / [( / 2) ].l l lβ = +  (8.5)

The stand basal area of the trees of radius r can now be determined using (8.1), 
as the product of the number of trees of radius r which were counted (n

r
) and b. The 

importance of (8.5) is that we see that b can be determined knowing only the length 
of the stick the observer is holding (l

s
) and the distance it is being held from the eye 

(l
e
). That is, stand basal area can be determined with no knowledge of the tree stem 

radius (r) or of the radius of the large dashed circle (R) within which trees of that 
radius are counted.

Even more importantly, this theory works for trees of any radius, not just r. Trees 
with a radius larger than r will be counted within a circle of radius somewhat larger 
than R, whilst trees with a radius smaller than r will be counted within a circle of 
radius somewhat less than R. But the observer need not know the tree radius or the 
circle radius to apply the theory; he or she can determine b from the length of the 
stick and its distance from the eye. Thus, suppose the observer counts a total of n 
trees from the spot, a total which includes trees of any size, then the total stand 
basal area G (m2/ha) will be given simply by

 G = nb. (8.6)

Equation (8.6) is perhaps the most astonishing result that has ever been devised 
for forest measurement. It means that stand basal area can be measured by 
counting trees from a single point, using an instrument as simple as a straight 
stick. All the observer then needs to do is measure the length of the stick and the 
distance it is held from the eye and use (8.5) to determine b. In point sampling, 
b is known as the basal area factor; in the measurement units used here, the units 
of b are m2/ha.



Point sampling was invented in 1948 by an Austrian forester, Walter Bitterlich. 
Whilst it is referred to here as point sampling, it is also called angle count sampling, 
angle gauge sampling, plotless sampling, Bitterlich sampling or variable radius plot 
sampling.

8.4.3 Plot Measurement Versus Point Sampling

It seems amazing that stand basal area can be measured by merely counting trees 
from a single point, using an instrument as simple as a small stick. Even after they 
have tried it, my forest measurement students always have great difficulty believing 
that point sampling really works; it just seems too simple to be true. On the other 
hand, they have no difficulty accepting the results from measuring a plot (Sect. 
8.4.1); they can see the plot boundaries and the trees in it, which they have meas-
ured with a diameter tape. Somehow, point sampling seems to be cheating; trees are 
just counted, not measured physically. However, the theory given above proves that 
point sampling works.

For both plot measurement and point sampling, one issue of concern is trees 
which are close to the boundary. In plot measurement, the convention adopted usu-
ally is that a tree is considered to be in the plot only if the centre of its stem lies 
within the plot boundary. On average then, as many trees of which only part of the 
stem cross-section is in the plot will be included as will be excluded. For point 
sampling, consider again Fig. 8.1. Suppose a tree of the same size as Tree 1 was 
just a little further away from the observer, so that part of its stem cross-section lay 
within the large dashed circle. That is, part of its stem cross-section lies within the 
circular area within which trees of that diameter will be counted in the point sam-
ple. However, because it is further from the observer than Trees 1, such a tree 
would be excluded by the point sampling process. Similarly, a tree such as Tree 1 
has part of its stem cross-section outside the large circle, but is included in the 
count. Thus, just like plot measurement, it is the position of the centre of the tree 
stem cross-section which will determine ultimately if the tree is included in or 
excluded from the point sample count.

It is important to realise that point sampling and plot measurement will usually 
give somewhat different answers for stand basal area; the answers will not be vastly 
different, but certainly often differ by several per cent. In point sampling, the size 
of the circle effectively swept out by the observer in making the count differs for 
the different diameters of the trees being counted (circle sizes which the measurer 
need never know). Hence it is impossible to define exactly what area of the stand 
is being used to measure the stand basal area; this has led to use of the alternative 
name variable radius plot sampling for the technique. On the other hand, a particu-
lar part of the stand is clearly identified as being used to measure the stand basal 
area in the case of plot measurement.

As well, it must be appreciated that both point sampling and plot measurement 
are a form of sampling of the stand (Sect. 8.2). An arbitrary choice has to be made 
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as to the location of the plot in the stand or the location of the point at which the 
point sample is taken. In other words plot measurement and point sampling will 
take samples from the stand in rather different ways. Inevitably then, they will give 
somewhat different results for stand basal area. That is not to say either result is 
wrong or one of the results is better, or more useful, than the other. They are just 
different results, which reflect the fact that the two methods sample the stand in 
different ways.

8.4.4 Practicalities of Point Sampling

One limitation of point sampling is that it can be used only to measure stand basal 
area over bark. If an under bark basal area is required, a method is needed to 
convert the over bark measurement to an under bark measurement. One system to 
do so involves measuring the over and under bark diameter of each tree, as it is 
counted. The method discussed below (Sect. 8.9.2) can then be used to find the 
stand basal area under bark, by replacing stem volume with stem basal area under 
bark in (8.10).

A number of issues need to be considered if point sampling is to be used appro-
priately. A straight stick is a perfectly good ‘instrument’ to use for point sampling, 
as indeed is the width of the observer’s thumb. Thumbs generally have a basal area 
factor within the range 2–5 m2/ha, depending on the individual’s thumb width and 
the length of his or her arm; most foresters have worked out the factor for their 
thumb (using 8.5) and use it to assess, quickly and easily, the stand basal area of a 
piece of forest they are visiting.

Often, a small, triangularly shaped glass or plastic prism (or basal area wedge, 
as they are often called) is used to carry out point sampling. When a tree stem is 
viewed through the prism, the triangular shape of the prism causes the view of the 
stem section to be displaced sideways, due to light refraction by the material of the 
prism. If, as the observer views it, the stem section is displaced less than, or just as 
much as, the width of the stem, the tree is counted. Otherwise, it is not. The princi-
ple of the method remains exactly the same, but the angle of the triangle of the 
prism and the refractive qualities of the material from which it is made together 
determine the basal area factor of the prism. Forestry suppliers sell these prisms 
with a wide range of basal area factors. The main advantage of prisms is that it is 
easier to see the tree stems than it is with a stick or thumb, and so easier to judge 
whether a particular stem should be included or not in the count.

The instruments used for optical dendrometry (Sect. 5.3.4) are usually constructed 
to allow point sampling to be carried out with them. Various other (often very 
cheap) devices for point sampling are available also from forestry suppliers

There are always trees for which the observer will find it difficult to judge 
whether they should or should not be included in the count. These will be trees 
which are very near the circumference of a circle being implicitly swept out by the 
observer, such as Tree 1 in Fig. 8.1. When such cases arise, the diameter of the tree 
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at breast height over bark and the distance from its stem centre to the observer 
should be actually measured. If its diameter is D (cm) and the distance to it is d (m), 
then it follows from the mathematics of Sect. 8.4.2 that the tree should be counted 
if d£D/ 4b  and otherwise not (this computation determines the radius, R, of the 
circle being swept out implicitly by the observer for trees of that particular 
diameter).

If the ground on which the count is being made is sloping, some of the instruments 
available for point sampling correct automatically for the slope. If using an 
unsophisticated instrument like a stick, it will be necessary to measure the diameter 
of each tree counted (D, cm) (or at least of those trees which are near doubtful), the 
distance along the slope from the observer to the tree (s, m) and the slope angle 
(g, degrees). The corresponding horizontal distance to the tree (d, m) is then calcu-
lated as d = s cos(g). The expression given in the paragraph above can then be used 
to	determine	if	the	tree	should	be	counted	or	not.	Generally	this	is	necessary	only	
if the slope exceeds about 8–9°.

It is important too that an appropriate basal area factor is used for the stand being 
considered. If the factor is too small, then a very large number of trees will be 
counted and some of the ease and speed of the method will be lost. If the factor is 
too large, too few trees will be counted to be a reasonable sample from the stand 
and the basal area determined may not represent the stand adequately. The larger 
the trees in the stand, the larger will be the appropriate basal area factor. In general, 
it might usually be considered appropriate to use a factor size which leads to a 
count of 10–15 trees. Many of the instruments available to carry out point sampling 
incorporate several factors and the user may choose one that is appropriate to the 
stand being considered.

Particular care needs to be taken in densely stocked forest, where some trees 
may be obscured from the observer’s view by others. Also it is easy for the observer 
to lose track of which trees have been considered and which not. Under these 
circumstances, it is desirable to have a two-person team to carry out the measure-
ments. One acts as the observer and the other walks about the stand, keeping track 
of what the observer has and has not viewed. To view obscured trees, the observer 
may have to move slightly away from the sampling point, but must ensure that he 
or she remains the same distance away from the obscured tree.

8.5 Stocking Density

Both plot measurement and point sampling can be used to determine stand stocking 
density (the number of tree stems per unit area). In plot measurement, the number 
of trees in the plot is counted. The number divided by the area of the plot is then 
the stocking density.

To get the stocking density when a point sample is taken, it is necessary to not 
only count the trees to be included in the point sample, but also to measure the 
diameter at breast height over bark of each counted tree. If there were n trees 
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counted and the diameter of the ith of those trees was D
i
 (cm), then the stand stocking 

density (S, stems/ha) can be determined as

 
2

1
[40,000 / ( )],

= ¼
= å i

i n
S Dβ π  (8.7)

where b is the basal area factor (m2/ha) used in the point sample. Note that in this 
equation, the mathematical expression S

i= 1…n
 denotes the summation of the term 

that follows the expression, as i takes successive values 1, 2, 3….etc., up to n.
There are methods other than point sampling which also do not require the 

establishment of a plot and which can be used to estimate stocking density. These 
involve selecting a number of points at random within the stand and measuring the 
distance from them to neighbouring trees. Payendah and Ek (1986) describe these 
methods. In the past, they have been subject to bias and rather more uncertainty 
than counting trees in a plot or doing point sampling. However, more recent 
research has been addressing these limitations (Picard et al. 2005; Kleinn and 
Vilčko 2006a, b; Magnusson et al. 2008).

Stocking density is useful for three main purposes. Firstly, dividing some other 
stand estimate (say, stem volume per unit area) by stocking density gives the aver-
age volume per tree in the stand. Secondly, the stocking density of a stand is an 
important variable used in describing the stage of development of a stand. Third, 
stocking density changes with age during the life of a stand as trees die or new 
seedlings are recruited to the stand. Determining how and when these changes 
occur is an important part of forest growth modelling, where mathematical models 
are used to predict how stands will grow and change with time. The use of forest 
growth models is fundamental to modern forest management and allows managers 
to predict the availability of wood, or other forest products, from a forest far into 
the	future.	Growth	modelling	will	not	be	discussed	further	in	this	book;	there	are	
various reviews and examples of both older and more recent approaches to forest 
growth modelling (Vanclay 1995; Battaglia and Sands 1998; Mäkelä et al. 2000; 
Peng 2000a, b; Le Roux et al. 2001; Avery and Burkhart 2002; Porté and Bartelink 
2002; Pretzsch et al. 2002; Landsberg et al. 2003; Valentine and Mäkelä 2005; 
Cienciala and Tatarinov 2006; Richardson et al. 2006; Tatarinov and Cienciala 
2006; Fourcaud et al. 2008).

8.6 Quadratic Mean Diameter

The average of the diameters of the trees in a stand is often a quite useful measurement 
to characterise the condition of a stand. Another measure used is called the 
quadratic mean diameter. This is the diameter corresponding to the average basal 
area of the trees in the stand. If a stand has a basal area G (m2/ha) and a stocking 
density of S (stems/ha) then its quadratic mean diameter D

q
 (cm) is



 q (40,000 / ) / .=D G Sπ  (8.8)

It is argued that quadratic mean diameter is often more useful than average diam-
eter, because it relates more closely to stand volume. It is also a useful measure to 
give some idea of the size of the trees in a stand when their average diameter has 
not been recorded. It has other uses, especially in defining the density of stands (the 
degree of crowding of the trees) (e.g. Pretzsch and Biber 2005; Woodall et al. 2005; 
VanderSchaaf and Burkhart 2007). Measures of stand density will not be discussed 
further here; their theoretical and biological bases are discussed in West (1983, 
2006) and in other forest measurement texts (e.g. Avery and Burkhart 2002).

8.7 Dominant Height

The average height of the trees in a stand can be a useful measure of stand condition. 
More frequently, measures known by the generic term stand dominant height are 
used to represent stand height. These are defined generally as the average height of 
the tallest trees in the stand.

8.7.1 Importance of Dominant Height

Stand dominant height is considered important in forestry because it reflects the site 
productive capacity of the species concerned, when it is growing on a particular 
site. By site productive capacity is meant the total stand biomass produced by a 
stand on a particular site, up to any particular stage of its development, when the 
stand has been using fully the resources necessary for tree growth which are 
available from the site.

Stand biomass production at any time is limited by the genetic characteristics of 
the species concerned, by the environmental characteristics of the site on which the 
stand is growing (particularly the climate and soil fertility), by the stage of develop-
ment of the stand, by the stocking density of the stand and by the way in which the 
trees have been tended (the silviculture applied) (West 2006). Measurement of site 
productive capacity is very important to forestry, because it indicates the maximum 
amount of the principal forest product, wood, which might be available from that 
forest on that site.

Because individual trees within forest stands compete with each other for 
the resources of the site (light, water and soil nutrients), their sizes differ. The more 
successful competitors eventually become the largest in size by suppressing the 
smaller, less competitive trees. As a result of the competition, the smaller trees 
die eventually. The intensity of this competition depends both on the degree of 
crowding of the trees on the site and the rate at which the more successful competitors 
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grow. The more the crowding and the faster the more successful trees grow, the 
more rapidly will the smaller trees succumb to the competitive pressure.

Given	 this,	 it	 is	 the	 characteristics	 of	 the	 competitively	 more	 successful	 trees	
which reflect ultimately the site productive capacity. Because the larger trees sup-
press the smaller ones, the characteristics of smaller trees merely reflect the fact 
that they are the less successful competitors. Furthermore, it is height, rather than 
biomass, which is the characteristic of the competitively more successful trees 
which best reflects the site productive capacity. Their biomass will depend very 
much on the stocking density of the stand in which they are growing. If, for what-
ever reason, the stocking density happens to be low, they may not be using fully the 
resources for growth available from the site. Their biomass would then be lower 
than it would be if there were more of them in the stand. However, much research 
has shown that their heights are not affected by their stocking density (although 
there have been exceptions to this, e.g. MacFarlane et al. 2000). Their heights will 
reflect the site productive capacity, even when the stocking density is sufficiently 
low that stand biomass is not reflecting it.

These arguments show why stand dominant height has achieved such a position 
of importance in forest measurement. A full discussion of how it is used to assess 
site productive capacity is given in Sect. 8.8.

8.7.2 Measuring Dominant Height

There are various ways in which stand dominant height is defined. One measure, 
top height, is defined as the average height of a specified number per unit area of 
the trees of a stand with the largest diameters at breast height (usually over bark). 
A second, predominant height, is defined as the average height of a specified 
number per unit area of the tallest trees in the stand. Other names and slightly 
different definitions are often used for these measures, but the terms and definitions 
used here are perhaps the most common.

It is up to the measurer as to the number per unit area of largest diameter or tallest 
trees to be used in these definitions for a particular forest type. The numbers used 
in practice vary widely from country to country, and forestry organisation to organi-
sation. Usually, a value within the range 40–100 stems/ha is chosen. The different 
numbers used in different places often make it difficult to compare published 
results from different parts of the world.

Top or predominant height is always measured in a plot of known area within a 
stand. Say the plot was 0.05 ha in area (perhaps a rectangular plot of 20 × 25 m) 
and the definition of top or predominant height to be used specified 40 stems/ha to 
be measured. Then, the heights of the 40 × 0.05 = 2 largest diameter or tallest trees 
would be measured in that plot and their average used as the measure of top or 
predominant height respectively. If the plot size and number per hectare are such 
that a non-integer number of trees should be measured, then the number actually 
measured is usually taken as the nearest integer number.



Practically speaking, it is easier generally to determine top height than predominant 
height, because it is easier to identify the largest diameter trees in the stand than the 
tallest ones; diameters of all the trees in a plot are often measured anyway. Of 
course, the largest diameter trees in the stand are often the tallest in any case; in 
practice, the difference between top height and predominant height is usually small 
for most forest stands.

8.8 Site Productive Capacity

The concept of site productive capacity was introduced in Sect. 8.7.1. Attempts 
have been made often to measure the characteristics of the soil and climate at a site, 
and use this information to predict forest production, hence, site productive 
capacity.

Some work of this type has related observed growth of forest stands to observed 
environmental characteristics, both weather and soil (Turvey et al. 1990; Osler 
et al. 1996b; Hackett and Vanclay 1998; Snowdon 2001; Uzoh 2001; Ryan et al. 
2002; McKenney and Pedlar 2003; Kimsey et al. 2008). Other work has involved 
the development of complex models which predict the physiological response and 
growth of tree stands in relation to the environmental characteristics (Running 
1994; Coops et al. 1998; Sands et al. 2000; Ditzer et al. 2000; Mäkelä et al. 2000; 
Mummery and Battaglia 2001; Landsberg et al. 2003; Roxburgh et al. 2004; 
Buckley and Roberts 2005a; Swenson et al. 2005; Cienciala and Tatarinov 2006; 
Louw and Scholes 2006; Tatarinov and Cienciala 2006). Because they are based on 
measurement of site environmental characteristics, these methods of measuring site 
productive capacity have been termed ‘geocentric’ methods. They are used princi-
pally to assess whether or not particular sites are appropriate for afforestation. They 
are sufficiently complex to warrant a book of their own and will not be considered 
further here.

A different method has been used in forestry for many years to determine site 
productive capacity of even-aged forests. It is a ‘phytocentric’ method, that is, a 
method based on measurement of the growth of the trees themselves, rather than 
the environmental characteristics of the site. The actual growth of the trees provides 
a direct measurement of the productive capacity of the site, whereas a geocentric 
method only predicts it from the site characteristics. Therefore, a phytocentric 
measure should be an unbiased and very precise measure of site productive capacity. 
However, a phytocentric method can be used only after the forest has been 
established	 on	 the	 site.	 Geocentric	 methods	 allow	 prediction	 of	 site	 productive	
capacity before the forest is established.

The phytocentric measure used in forestry involves measurement of the top or 
predominant height of an even-aged forest stand, usually at an early stage of its 
development. Of course, top or predominant height changes with age in any even-aged 
forest stand as it grows. To allow for this, the phytocentric measure of site productive 
capacity is defined as stand dominant height at a particular age and is known in 
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forestry as stand site index. For a particular type of forest in a particular forest 
region, the age chosen to define site index is not of any special importance; it is 
chosen entirely at the discretion of whoever develops the measure for that forest. 
Whatever age is chosen, it is termed the index age for that forest.

Thus, suppose the index age chosen for a particular forest type is 20 years. Then, 
a stand with a dominant height of 25 m at 20 years of age would have a site index 
of 25 m. Forestry research has shown consistently that site index is a very reliable 
measure of site productive capacity, for even-aged forest types throughout the 
world. The only caveat on this is that it is true only after the forest reaches about 
5–10 years of age. In forest younger than this, the trees may not have grown large 
enough to be competing with each other, so that dominant height becomes a good 
measure of productive capacity (Sect. 8.7.1).

One way to measure site index is to wait for a stand to reach the index age and 
then measure its top or predominant height. However, for most of the commercially 
important forest types throughout the world, site index functions have been devel-
oped so that stand site index can be determined for the stand, no matter at what age 
it is measured. A typical example will be described here to illustrate how site index 
functions are used.

The example is taken from West and Mattay (1993), who developed a site index 
function for the commercially important species flooded gum (Eucalyptus grandis), 
which grows in even-aged, native and plantation forests in subtropical eastern 
Australia. West and Mattay defined stand top height in that forest as the average 
height of the 50 largest diameter trees/hectare, and site index as the top height at 20 
years of age (the index age they chose). Their function allows prediction of the top 
height H

2
 (m) of a stand at some age A

2
 (year) from its top height H

1
 (m), which 

was measured at some other age A
1
 (year), as

 0.563
2 1 2 1{[1 exp( 0.0126 )] / [1 exp( 0.0126 )]}H H A A= - - - - . (8.9)

Suppose a flooded gum stand was measured at 12 years of age and found to 
have a top height of 23.1 m. Equation (8.9) predicts that its top height would be 
30.0 m at 20 years of age. Since 20 years of age was the index age used for these 
forests, the site index of this stand has then been estimated as 30.0 m, from a 
measurement of its top height at 12 years of age. The function could be used in a 
similar fashion to predict the stand site index from measurement of its top height 
at any other age.

Figure 8.2 shows how West and Mattay’s site index function predicts stand top 
height will change with age in stands of site index 20, 30 or 40 m. Note that at the index 
age chosen for this forest, 20 years of age, the function predicts (by definition) that top 
height equals the site index. Similar lines could be drawn for any other site index. The 
position is indicated on the 30 m site index curve of the top height H

2
, as predicted from 

the measured top height H
1
, in the example in the preceding paragraph.

Many functional forms different from that of (8.9) have been used as site index 
functions by different authors from time to time, for various species in various 
parts of the world. Huang (1997) lists a number of these alternatives. However, 



(8.9) is a commonly used function, which continues to be found useful (Diéguez-
Aranda et al. 2006a; Louw and Scholes 2006; Mamo and Sterba 2006; Nord-
Larsen 2006).

The importance that the use of site index has assumed today in even-aged forest 
management cannot be over-emphasised. It is an integral and basic part of most of 
the forest growth models which are used by managers of even-aged forests, 
throughout the world, to predict the long-term availability of wood from them.

Forestry science has paid much less attention to the development of measures of 
site productive capacity for uneven-aged forests. The inability to define their age 
makes it impossible to use the types of measure which have been developed so 
reliably for even-aged forest. One phytocentric measure which has been used is the 
stand basal area or dominant height when the forest has reached an equilibrium 
stage of development (see Sect. 8.11), when its basal area or height does not change 
with time. Other measures include the height of trees with a specified stem diam-
eter or a complex summation of the diameters of specific ‘index’ species in the 
stand. These measures apply generally to the later developmental stages of uneven-
aged forest (Sect. 8.11), and it would be difficult to use them to measure site pro-
ductive capacity when the forest is at an early stage of its successional development. 
Vanclay (1992) has reviewed these measures. More recent work to develop  geocentric 

Fig. 8.2 Change with age of top height of stands of E. grandis of site index (SI) 20, 30 or 40 m, 
predicted using the site index function of West and Mattay (1993). The vertical dashed line shows 
the index age they used to define site index in this forest. In the example discussed in the text, the 
value of top height H

2
 was predicted from a measured value H

1
, using (8.9)
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measures for uneven-aged forest (e.g. Ditzer et al. 2000) may eventually  provide 
better measures of site productive capacity than the phytocentric measures which 
have been developed to date.

8.9 Volume

The way in which stand stem volume is measured will depend on the resources 
which are available to the measurer and the precision required of the estimate. This 
section will consider first the case that stand stem volume is being measured in a 
plot and then the case that the stand is being measured using a point sample.

8.9.1 Plot Measurement

A first possible way to determine stand volume for a plot, and by far the most labo-
rious, would be to measure directly the stem volume of each and every tree in the 
plot. The individual tree volumes would then be added up and the result divided by 
the plot area to give stand volume. The tree volumes could be found using the 
methods for sectional measurement of standing trees (Sect. 5.3.4), or through 
importance or centroid sampling (Sect. 5.4). Stand volumes, either as total stem 
volume or volumes of different merchantable log sizes, could be obtained with 
these methods. Allowance must be made if under bark, rather than over bark, stem 
volumes are desired; this issue was discussed in Sects. 5.3.4 and 5.4.

A second method would be to measure directly the volumes of only a sample of 
trees from the plot. The information from that sample could then be used to estimate 
the stand stem wood volume for the whole plot. There are a number of mathematically 
formal ways in which the trees to be included in the sample could be chosen. These 
are discussed in detail in Chaps. 9 and 10; an example is used in Sects. 9.4, 10.2.1 
and 10.2.2 which describes the estimation of stand stem wood volume from a 
sample of trees taken from a plot.

A third method would also involve measuring volumes of a sample of trees from 
the plot. For many stands, a graph of stem volume against the square of stem diameter 
at breast height will show there is a very close relationship between these two 
variables for the sample trees. A regression equation (Sect. 6.2.1) could then be 
fitted to the sample data and this used to predict volumes of all other trees in the 
stand from measurement only of their stem diameters. An example where this 
method is used is given in Sect. 10.4.1.

If a tree volume or taper function (Chap. 6) is available for the species 
concerned, a fourth method to determine stand volume would be to use those functions 
to estimate total or merchantable stem volumes for each and every tree in the plot. 
This usually requires that only tree diameter at breast height and total height of each 
tree in the plot be measured (or occasionally some additional measurements, as in 
the examples in Sect. 6.2.2).
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Measurement of the height of every tree in the plot, as required by the 
fourth method, can be time consuming. Particularly for even-aged forests, 
there is often a strong relationship between tree diameter at breast height and 
total height. Where this is the case, a fifth method to estimate stand volume 
might be used. In this case, a sample of trees from the plot would be measured 
for height. Then, a regression relationship could be established from the sam-
ple data, from which other tree heights in the plot might be estimated from 
their measured diameters. West (1979) discussed a number of regression functions 
which might be suitable for this purpose. Soares and Tomé (2002) also list 
possible functions to do this, and consider also functions which might be used 
to predict individual tree heights generally, for a particular species right across 
a particular region.

It would be expected that the precision of the estimates of stand stem volume 
made with these various methods would decline in much the same order as they 
have been presented here. More and more assumptions and regression functions are 
involved the further one moves through the five methods. Interestingly however, 
West (1979) made a study of the precision of the stand total stem wood volume 
estimates obtained in stands of 20–100-year-old native eucalypt forests in Tasmania, 
Australia, using what might be expected to be the least precise of all these methods, 
the fifth. He found that even for this method, the stand volume estimated nearly 
always lay within ±6% of the true stand volume and was often much closer. This 
result illustrates how reliable are the methods which have been devised for measur-
ing stand wood volumes in forests.

A sixth possible method for measuring stand volume is worth mentioning also. 
Stand volume estimation functions have been developed from time to time for 
particular forest types in particular regions. Rather than having to measure indi-
vidual trees in a stand, these functions allow estimation of stand volume (total stem 
or merchantable volume) directly, usually from measurement of stand basal area 
and stand dominant height. Whilst becoming less common today, stand volume 
estimation functions do continue to be developed (Brooks and Wiant 2004).

8.9.2 Point Sampling

If a point sample is being taken in a stand (Sect. 8.4.2), its method can be adapted 
to provide an estimate of stand volume. To do so requires measuring the diameter 
at breast height over bark and stem volume (total or merchantable) of each of the 
trees counted in the point sample. The volume measurements could be done by 
direct measurement with sectional measurement (Sect. 5.3), by importance or 
centroid sampling (Sect. 5.4), or by estimation with a tree volume or taper function 
(Sects. 6.2, 6.3).

Suppose n trees were counted in the sweep, the diameter of the ith of those trees 
was measured as D

i
 (cm) and its stem volume was measured as V

i
 (m3). Then, the 

stand stem volume V (m3/ha) can be determined as
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Please note the erratum to this equation at the end of the book.

where b (m2/ha) is the basal area factor. Marshall et al. (2004) have considered what 
basal area factor it is appropriate to use in such cases.

8.10 Biomass

The biomass of the whole or parts (leaves, stems, roots etc.) of individual trees in 
a stand may be obtained either by direct measurement (Sect. 7.2) or through the use 
of biomass estimation functions (Sects. 7.3 and 7.4). Because of the large amount 
of work involved, direct measurement will be rare; usually it will be done only in 
a research context, to obtain data to develop biomass estimation functions.

If plot measurement is being used, once individual tree biomasses have been 
obtained, they may be added and the total divided by the plot area to obtain the 
stand biomass, just as for stand basal area (Sect. 8.4.1) or stand volume (Sect. 
8.9.1). If point sampling has been used, the same method is used to determine 
stand biomass as described for stand volume (Sect. 8.9.2), with individual tree 
biomasses replacing individual tree volumes in (8.10). If leaves are being considered, 
it is often their area, rather than their biomass that is of interest (Sect. 7.2.1). Stand 
leaf area is known as leaf area index; it can be determined from individual tree 
leaf areas, just as for biomass. Its value varies over a range of about 2–11 m2/m2 
for forests of the world (Beadle 1997) and correlates closely with the availability 
of water or nutrients from a site. There are a number of ways by which it can be 
measured directly in a stand; these are forms of remote sensing and are described 
in Sect. 13.1.2.

An alternative to using individual tree biomass estimates to determine stand 
biomass is to use a stand biomass expansion factor (c.f. Sect. 7.4.2). This is the ratio 
between stand biomass and stand volume; the aim of using such factors is to take 
advantage of the many tree volume functions that are available already (Chap. 6) 
and which can be used to give estimates of stand volume. There are a number of 
examples of the use of stand biomass expansion factors in various forest types 
(Grierson	et	al.	1992;	Lehtonen	et	al.	2004,	2007;	Van	Camp	et	al.	2004;	Jalkanen	
et al. 2005; Cienciala et al. 2008).

8.10.1 Root Biomass

As discussed in Sect. 7.2.3, there are particular problems involved with root bio-
mass measurement, especially the difficulty of identifying to which tree in a stand 
any particular root belongs. When great care has been taken to match roots with 
trees, individual tree biomass estimation functions for roots have been developed 
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(Sect. 7.4.4). However, to avoid the problem of having to match roots and trees, it 
has become common to develop stand based biomass estimation functions for 
roots, in preference to functions for individual trees.

In this sub-section, we will consider such functions for coarse or total (coarse 
plus fine) stand root biomass. The most common form of these functions is the simple 
allometric equation (Sect. 7.3)

 R AB Bδγ=  (8.11)

where B
R
 (tonne/ha) and B

A
 (tonne/ha) are stand coarse or total root oven-dry bio-

mass and stand above-ground biomass, respectively, and g and d are parameters of 
the equation. In practice, individual tree biomass estimation functions (Sect. 7.3), 
individual tree biomass expansion factors (Sect. 7.4.2) or stand biomass expansion 
factors, will be used to estimate stand above-ground biomass for the trees of a plot. 
That estimated value of stand above-ground biomass will then be used with (8.11) 
to estimate a corresponding coarse or total root stand biomass.

Mokany et al. (2006) attempted to develop a widely applicable stand root 
biomass estimation function of the form of (8.11). They collated root and above-
ground stand biomass data, which had been collected by many different researchers 
from a wide range of forest and woodland stands of many different species and 
forest types, right across the world. Their function is illustrated by the solid line 
drawn on Fig. 8.3, which shows how the proportion of stand total biomass (above- 
plus below-ground) which is roots varies with the total biomass. Mokany et al’s 
function predicts that stand root biomass declines progressively from around 
25–30% of total biomass, in forests with a small total biomass (say, younger forest 
or open woodlands) to just under 20% in forests with a large total biomass (say, tall, 
mature forests). As shown also on Fig. 8.3, Niklas (2005) also used a data set collected 
widely across the world and obtained results similar to those of Mokany et al.

Mokany et al’s and Niklas’ results represent averages for forests generally around 
the world. However, there will be much variation around those averages, if one 
considers stands of particular tree species, of particular ages and growing in the 
environmental circumstances of any particular geographical region. Li et al. (2003) 
collated above- and below-ground stand biomass data available from the literature 
for forests of cold temperate and boreal regions, principally of the northern hemi-
sphere. Their root biomass estimation functions, which also used (8.11), are illus-
trated also on Fig. 8.3. Their results are rather different from Mokany et al’s and 
Niklas’ results for forests of the world generally. In particular, they found a distinct 
difference between forests of softwood and hardwood species; neither Mokany et al. 
nor Niklas identified any such difference. Results obtained using (8.11) by Snowdon 
et al. (2000) for a wide range of forest types right across Australia are shown also on 
Fig. 8.3. The Australian data were probably dominated by hardwood species and 
there does appear to be some commonality between Snowdon et al’s results and Li 
et al’s hardwood results for northern hemisphere forests. However, the results do 
suggest that roots tend to make up a rather lower proportion of total biomass in 
Australian forests when compared with other parts of the world.
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Research work is continuing to develop root biomass estimation functions of 
this nature, for other forest types in other parts of the world, and to study what 
determines the proportion of stand biomass which is roots (Kajimoto et al. 2006; 
Zerihun et al. 2006; Cheng and Niklas 2007; Wang et al. 2008b). No consistent 
pattern has emerged yet to allow the development of definitive stand root biomass 
estimation functions.

8.10.2 Fine Root Biomass and Area

There are perhaps even greater difficulties in measuring fine roots and determining 
estimation functions for them than for total or coarse root biomass (Sects. 7.2.3, 
7.4.4).	Just	as	with	total	and	coarse	roots	(Sect.	8.10.1) there have been attempts to 
develop functions to estimate stand fine root biomass directly, rather than individ-
ual tree fine root biomass.

One approach was adopted by Zerihun et al. (2007) for woodland forests of 
poplar box (E. populnea) in northern Australia. Assumptions were made about 

Fig. 8.3 Stand root biomass as a proportion of stand total biomass in relation to total biomass. 
Result are shown for an average for forests and woodlands of the world (Solid line) (0.489, 0.890) 
(Mokany et al. 2006) and (solid broken line) (0.372, 0.924) (Niklas 2005, Table 1, Canell data set), 
for Canadian softwood (hyphenated line) (0.222, 1) and hardwood (solid broken line with hyphen-
ated line) (1.576, 0.615) forests (Li et al. 2003) and for Australian forests and woodlands (dotted 
line) (0.677, 0.712) (Snowdon et al. 2000, Table 3.6). Results were derived from functions of the 
form of (8.11); in each case, values in parentheses are for the parameters g and d of that function
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how fine roots were distributed spatially around individual trees in a stand and a 
model was then developed which predicted this distribution as a function of tree 
diameter. Applying this model to all trees in the stand gave an estimate of stand 
fine root biomass. The system was only partially successful in the woodlands 
where it was tested.

Other workers have found correlations between fine root biomass in stands and 
stand parameters, such as the amount of nutrients in litter falling from the above-
ground parts of trees and site rainfall and temperatures (Vogt et al. 1998); these 
relationships tend to be specific for the site and species concerned and cannot be 
used to make predictions for other sites or species.

As for leaves (Sect. 7.4.4) the area of fine roots can be of great interest as well 
as their biomass. Fine roots absorb water and nutrients through their surfaces and 
so their area is an important measure of their capability to do so. Stand fine root 
area index is the below ground equivalent of stand leaf area index. Al Afas et al. 
(2008) found that it correlated quite closely with leaf area index, in a set of plots of 
various poplar clones (Populus spp. and hybrids) growing at one site in Belgium. 
Since it is the fine roots which must gather, from the soil, the water and nutrients 
required by the leaves, it might indeed be expected that fine root area index and leaf 
area index should be correlated. In the 2-year-old stands Al Afas et al. considered, 
fine root area index could be estimated quite closely as being 64% of leaf area 
index. It is unlikely that the same relationship would hold on different sites and 
would have to be evaluated separately for each site.

All these examples of stand fine root biomass (or area) estimation functions are 
rather specific to the site and forest circumstances for which they were derived. 
There remains much research to be done before satisfactory fine root biomass esti-
mation functions become available generally.

8.10.3 Precision of Biomass Estimates

Whilst much research of recent times has been concerned with the development of 
biomass estimation functions, much less attention has been paid to the precision 
(Sect. 2.4) of the estimates that are obtained with them.

Wutzler et al. (2008) have attempted to do so, when their biomass estimation 
function for individual trees of European beech (Fagus sylvatica) across central 
Europe was used to predict stand above-ground biomass (by summing biomass 
estimates for individual trees in the stand). They found that the estimates of stand 
biomass were highly likely to lie within just a few percent of their true values. This 
is a comfortingly high level of precision for many of the practical purposes to 
which biomass estimation functions are being put around the world.

In another example, Case and Hall (2008) considered how the level of precision 
of biomass estimates changed with the scale which applied to the biomass function 
used to make the estimate. As might be expected, they found that a function developed 
using local data will give a rather more precise estimate for a stand in the same 
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local area than will a function developed from data collected widely from many 
sites across a geographically large region.

Zianis (2008) has proposed theory to allow formal estimates to be made of precision 
of biomass estimates at single tree and stand levels, when biomass functions based 
on (7.1) are used. Interestingly, he showed that the most precise estimates were 
obtained using an approach related closely to that of Pilli et al. (2006) (Sect. 7.3). 
Many more such tests of precision, for many different forest types around the 
world, will be necessary before we will be able to use biomass estimation functions 
with as much confidence as we presently use stem volume estimation functions.

8.11 Stand Growth

The rate of growth of trees in forests, hence, the rate at which they produce wood, 
is of prime concern to anyone growing forests for commercial purposes. The rate 
of production of forests depends on the site productive capacity (Sect. 8.7.1), their 
stocking density and the way in which the trees are tended. Detailed discussion of 
these issues, at least for plantation forests, can be found in West (2006) and they 
will not be considered further here. However, there are some conventions used in 
forestry to refer to stand growth rates. These will be discussed here.

Figure 8.4a shows an example of how stand stem wood volume changes with age 
in a forest. The example is taken from West and Mattay (1993), for a typical stand 
of the same flooded gum (E. grandis) forest for which the example site index func-
tion was described in Sect. 8.8.	Growth	is	shown	only	from	5	years	of	age,	because	
that was the youngest age for which West and Mattay had data available. The sig-
moidal (S-like) shape of the curve is common to even-aged forests throughout the 
world; in fact, the growth of many biological organisms displays such a shape. In 
the present example, the S shape is rather asymmetrical, with the bend in the S 
occurring at about 15 years of age. If, instead of volume, stand stem basal area or 
biomass was shown on the graph, the shape of the curve would be much the same.

In forestry, stand growth rate is usually expressed in one of two ways. The first, 
current annual increment (often abbreviated as CAI and also termed periodic 
annual increment, abbreviated to PAI), is the immediate growth rate of the stand 
at any particular age, that is, the growth rate occurring at a particular instant in time. 
It was this that was being referred to in using the term growth rate in the preceding 
paragraphs.

Trees grow too slowly to measure their growth over periods of a few seconds, 
as would be required in practice to determine their immediate growth rate. Hence, 
current annual increment is usually determined approximately by measuring a 
stand at intervals often of about 1 year (often longer in very slow growing forests). 
Current annual increment is then approximated as the change in the stand between 
the two measurements, divided by the length of time between them. Figure 8.4b 
shows how the current annual increment of the stand in Fig. 8.4a changed with 
age. Note that the current annual increments shown in Fig. 8.4b are exact, because 
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they were determined from the curve in Fig. 8.4a using the mathematical tech-
nique known as differential calculus; had they been determined by measuring the 
forest at annual intervals, they would have been approximate. The less mathemati-
cally inclined reader may ignore this, but should concentrate on the shape of the 
current annual increment curve. It shows that the current annual increment in this 
stand increased progressively to reach a maximum at about 15 years of age (that 
maximum actually occurs at the bend in the S shape in Fig. 8.4a). Thereafter, the 
current annual increment declined steadily. If West and Mattay had data from 
stands much older than the 75 years of age shown in the figure, it would be 
expected that their current annual increment would have declined eventually to 
near zero as the trees became senescent.

This pattern of growth rate is common to forests throughout the world. It would 
be of considerable interest to forestry to know what causes the decline in current 
annual increment that is apparent after 15 years of age in Fig. 8.4b. If it did not 
happen, the total production by forests would reach much higher levels, at much 
earlier ages. Various theories have been advanced to explain the phenomenon. 
Perhaps the most enduring has been that, as trees become larger with age, the path 
for water transport from the roots, through the stem and branches to the leaves 
becomes increasingly more tortuous. This leads to a higher level of water stress in 
the leaves of the tree and reduces the amount of photosynthesis, hence, production 
that occurs in the leaves over any period of time. Research is continuing on this and 
other	theories	(Gower	et	al.	1996;	Ryan	et	al.	1997;	Murty	and	McMurtrie	2000;	
Smith and Long 2001; McDowell et al. 2002; Binkley 2004; Reid et al. 2004; Ryan 
et al. 2004; Buckley and Roberts 2005b; Zaehle 2005; Martínez-Vilalta et al. 2007; 
Mencuccini	et	al.	2007;	Vanderklein	et	al.	2007;	Groot	and	Saucier	2008).

Fig. 8.4 (a) Change with age in stand stem wood volume of a typical stand in E. grandis forest 
in subtropical eastern Australia. (b) The change with age in current annual increment (solid line) 
and mean annual increment (dotted line) in stand stem wood volume for the same stand (drawn 
using Equations 8, 10 and 11 of West and Mattay 1993)
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A second measure used to describe stand growth rate in forestry is called mean 
annual increment (often abbreviated as MAI). This is the average rate of produc-
tion to any particular age of the stand. It is determined simply as the stand volume 
(or basal area or biomass) at any age, divided by the age. It is probably the most 
popular measure used by foresters to indicate how fast a forest grows. Mean annual 
increment changes with age during the life of the forest, as illustrated by the dotted 
line in Fig. 8.4b. The units for mean annual increment are m3/ha/year, the same as 
those for current annual increment.

The most productive forests in the world are plantations, because they receive 
intensive silvicultural management. West (2006) has summarised knowledge on 
their growth rates. Plantations being grown for wood for paper-making or to be 
sawn into timber are usually planted at stocking densities of about 800–2,500 
stems/ha. The fastest growing hardwood plantations of these have a mean annual 
increment which rises to a maximum of about 60 m3/ha/yr at around 6–7 years of 
age, then declines steadily to just over 30 m3/ha/yr by 30 years of age. Softwood 
plantations tend not to grow so rapidly at first, but the fastest growing reach a maxi-
mum mean annual increment of about 50 m3/ha/yr at around 15–17 years of age and 
then decline steadily to just over 35 m3/ha/yr at 30 years of age. Some plantations 
are established at much higher stocking densities, often about 10,000 stems/ha, for 
production of wood for bioenergy. These may have even higher mean annual incre-
ments; values as high as 100 m3/ha/yr, to 3 years of age, have been reported (Sims 
et al. 1999).

The general situation for growth of uneven-aged stands is not greatly different 
from that of even-aged stands. If the development of an uneven-aged stand is fol-
lowed starting from bare ground, its growth trajectory will usually follow a sigmoid 
growth pattern as in Fig. 8.4a. However, later in their life-cycle, the growth behav-
iour of uneven-aged stands can differ from that of even-aged stands.

An example of this is given by Moser (1972), who studied the growth over 18 
years of uneven-aged stands of a mixture of hardwood tree species native to 
Wisconsin in the USA. Moser found that their current annual increment in stand 
basal area was virtually constant, at about 0.15 m2/ha/yr, for the entire 18 years. It 
is clear from Moser’s work that the forest with which he was dealing had reached 
a more or less equilibrium stage of development. Each year some trees died. Each 
year some new seedlings regenerated below the existing canopy to grow slowly in 
the shaded environment until they reached the upper canopy many years later. The 
remaining trees, which were already in the upper canopy, continued to grow year 
by year until eventually, they too, would be among the annual deaths.

Most uneven-aged forests reach this equilibrium stage at the end of the succes-
sional development stages through which they pass during their life-cycle. This 
final stage may last for many decades or even hundreds of years, until some cata-
strophic disturbance (a severe fire, a major storm or logging) destroys the forest 
completely. The forest then has to start its life-cycle afresh from bare ground, with 
rapid early growth of species tolerant of the full light conditions, followed by 
development of species which are able to grow under shade; sometimes this suc-
cession process is altered by smaller disturbances which are insufficient to destroy 



totally the forest. This is the life-cycle enjoyed also by rainforests, as discussed in 
Sect. 8.3. The review by Porté and Bartelink (2002) considers how growth behaviour 
of uneven-aged forests is modelled. They show a number of examples of how their 
growth behaviour changes as they pass through their various successional stages.

Even-aged forest stands may reach a stage late in their life when they have zero 
current annual increment, or indeed even a negative current annual increment as 
some trees die. However, this is only a period of old age and is not accompanied by 
the continuous cycle of regeneration, death and growth that occurs in the equilib-
rium stages of uneven-aged forest.
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Chapter 9
Measuring Populations

9.1 Forest Inventory and Sampling

Discussion to this point has dealt with the measurement of individual trees and the 
measurement of groups of trees (stands). The next four chapters will consider the last 
stage in scaling up of measurements (Sect. 1.3), which is the inventory of forests 
that is, the measurement of whole forests or (as they might be called more formally) 
forest populations.

What is defined as a whole forest (forest population) is completely in the eye of 
the beholder. To a farmer, it might be an area of only a few hectares of plantation 
forest on his or her property. To a large company, it might be thousands of hectares 
of both plantation and native forests, supplying many thousands of cubic metres of 
wood annually to large wood processing plants.

There are many things an owner might want to know about the forest; these 
might include the availability of wood from it, the occurrence of plant and animal 
ecosystems within it or the way in which the public uses it. Whatever the owner 
wants to know, it is obviously impossible, even for quite small forest areas, to measure 
every tree or every animal in it or the activities of every person who uses it.

To make tractable the problem of measuring whole forests, we resort to sampling. 
That is, small parts of the forest are measured, usually a tiny fraction of the whole, 
and it is assumed that the parts measured represent adequately the whole. The 
measurements made on the sample are then used to make an estimate of the char-
acteristics of the whole forest.

Sampling is not restricted to forestry. It is used to learn things about populations in 
all areas of human endeavour. A population can be defined as any set of things about 
which it is desired to know something. Populations can be big or small. Astronomers 
might want to know things about the stars in the Milky Way galaxy and will define 
them as their population; in that case it is a very large population, both in numbers and 
the space it occupies. Geographers might wish to know things about the people who 
live in Siberia; those people will constitute their population. An ecologist might wish 
to learn about the behaviour of ants in the root ball of a single tree which has blown 
over, and those ants will constitute his or her population. The most important thing 
about defining a population is to do so clearly. Then, it will be quite apparent what is 
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and what is not included in it, and so what things within it are eligible to be included 
in any sample taken from it.

Speaking formally in mathematical statistical terms, populations are made up of 
sampling units. A sampling unit is any clearly defined part of, or an individual in, 
a population and which might be included as one member of a sample drawn from 
it. In the population of the Milky Way galaxy, individual stars might be the sam-
pling units. In Siberia, individual people might be the sampling units. In ants in a 
root ball, individual ants might be the sampling units.

There are many ways both in which a sample can be drawn from a population 
and how the information derived from that sample is used to learn something about 
the whole population. Knowing how to sample populations is the realm of sampling 
theory in mathematical statistics, a complex field of study in its own right. In this 
book, only a tiny part of that field will be considered.

This chapter considers some basic mathematical statistical methods in Sects. 
9.2–9.3. In Sect. 9.4, these methods are applied to an example, which uses the very 
simplest sampling method. More complex sampling methods are discussed in 
Chap. 10.

9.2 Subjective Versus Objective Sample Selection

The selection of a sample from a population could be done subjectively. That is, the 
sample selector could choose sampling units from the population which he or she 
considers ‘typical’. Or perhaps he or she could select samples at extreme ends of 
the population and assume that their average represents the population.

However, subjective selection always risks the biases of the selector’s judge-
ment; there is no guarantee that the results from such samples will reflect properly 
the true characteristics of the population. Even worse, if the selector is corrupt, he 
or she might choose a sample which leads to an estimate of the population which 
is desired by the selector.

In science in general, and in forest inventory it is no different, sample selection 
is done objectively, so the personal prejudices or fallibilities of the selector play no 
part. This is usually (although not always) done by a random selection process: 
given the individuals in a population, tables of random numbers, or a computer 
random number generator, are used to select which sampling units will be included 
in the sample. Modern computer systems have random number generators included 
as a part of them.

In mathematical statistical terms, it is impossible generally to develop theory 
appropriate for other than objectively chosen samples. Furthermore, if the information 
learnt about a population from a sample is to be defensible, it must have the impri-
matur of mathematical statistical rigour. Thus, in the discussion of sampling for 
forest inventory, this book will be concerned with the variety of objective strategies 
that are used for sample selection.
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9.3 Population Statistics

Much of what is done in science involves making generalisations about things. 
Questions are asked like ‘how much weight does an ant carry?’, or (in a rather less 
scientific question), ‘how far will a family travel on a hot Sunday afternoon to treat 
the children to an ice-cream?’ Individual ants vary in how much weight each can 
carry (ants vary in strength just like people do) and families vary in just how far 
they will travel for an ice-cream (parents vary in their tolerance of their children’s 
demands and children vary in their passion for ice-cream); in science, the objective 
is usually to make a general statement about such things and avoid the fine detail 
of the variation amongst individuals.

To make these generalisations, various population statistics are used. These are 
measures used to summarise the properties of populations. Several of importance 
to forest inventory are described below.

9.3.1 Measures of Central Tendency

Measures of central tendency attempt to summarise the magnitude of whatever it 
is that is being measured in a population. The measure used most commonly is the 
average, or mean, as it is called in mathematical statistics. Then a generalisation 
about ants could be made by saying something like ‘on average, ants carry a load of 
10 mg (milligrams)’. A generalisation about ice-cream-seeking families might be ‘the 
average family will not bother to go out for ice-cream if the trip involves a drive of 
more than 3 km, or which takes more than 20 min’, information that would be useful 
to an ice-cream entrepreneur considering where to set up new ice-cream stalls.

Other measures of central tendency are used for various purposes, particularly 
the median (the value in a set of data which has an equal number of values greater 
than and less than it) and the mode (the most common value in a data set). These 
can be particularly useful when the values in a data set are not spread similarly 
above and below the mean (that is, when the data have a skewed distribution).

9.3.2 Variance and Confidence Limits

It is of interest (at least to an ecologist) to know that ants carry 10 mg in weight on 
an average. That information will have been derived from a sample of ants in the 
ant population, a sample obtained by stealing the loads from some ants and weighing 
them. However, we cannot be sure just how representative the sample is of the 
whole population of ants. Maybe, over the whole population, the ants actually carry 
average loads of 15 mg, but the average in the sample was only 10 mg. In other 
words, it is necessary to recognise that any sample taken from a population can only 
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give an approximation to the true value of the measure of central tendency which 
is being determined for the population.

Mathematical statistics provides an important population statistic, the confi-
dence limit, which allows us to state exactly how confident we are that a mean 
obtained from a sample truly represents the actual mean of the population. It is a 
measure of the precision of the estimate of the population, where ‘the repeated 
measurements or estimates of something’ (see Sect. 2.4) are the measurements 
taken in the sample, the ‘something’ in this case being the population.

In turn, the confidence limit is based on a measure of precision called variance, 
which was mentioned also in Sect. 2.4 and was left to be considered further here. 
A large part of the entire discipline of mathematical statistics is concerned with 
how to deal with variation in natural systems and, so, with the determination of 
their variance.

9.4 Calculating the Population Statistics

An example will be used to illustrate the calculation and interpretation of the mean, 
variance and confidence limit of a population. The population to be considered will 
be the trees growing in a 0.25 ha plot in an area of native eucalyptus forest in north-
ern New South Wales, Australia, a population measured for many years by my 
forest measurement students. There are 107 trees in this population. The diameter 
at breast height over bark and stem wood volume of each are given in Table 9.1. 
The sampling units in the population will be the individual trees. Their volumes 
vary over the range 0.013−1.977 m3 and their average volume is 0.424 m3.

Suppose the stem wood volumes of all the trees in this population had not actually 
been measured and it was desired to estimate their mean volume by selecting a 
sample from them. The stem wood volumes only of the trees selected in the sample 
would then be measured. Suppose it was decided to select 15 trees from the population 
as the sample and, to ensure objectivity, these trees were selected randomly. 
Suppose also that the sampling was done without replacement (that is, once a tree was 
selected in the sample, it was not considered for inclusion again); most sampling in 
forest inventory is done without replacement.

Table 9.2 lists a sample of 15 trees selected randomly from the population (the 
selection was done with the aid of a random number generator on my computer). 
After selecting the sample, the wood volumes of the stems of those trees would 
have been measured, using one of the techniques discussed in Chaps. 5 and 6.

Suppose there are n individuals in the sample (n = 15 in this case) and the stem 
wood volumes measured on those 15 trees are denoted as y

i
 (with i taking the values 

1,2…n), so that y
1
 = 1.457, y

2
 = 0.717 … y

15
 = 0.013 (as in Table 9.2). The average 

(that is, the mean) volume of the sample, Y
M

, is calculated as

 M ii= …n
Y = y / n.  

1
é ùë ûå  (9.1)
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For the sample, this gives a mean volume of 0.290 m3, a good deal less than the 
actual mean of 0.424 m3 for the whole population. This emphasises how far the 
estimate of the population mean determined from a sample can deviate from the 
true mean of the population.

The variance of the mean of the sample, V
M

, is determined as

 ( ) [ ]2

M M1
1 .

= ¼
é ù= - -ë ûå ii n

V y Y n  (9.2)
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Table 9.1 The diameter at breast height over bark (DBH) and stem wood volume of each of a popu-
lation of 107 trees in a eucalypt forest plot. The average volume of the trees in the plot is 0.424 m3

Tree
DBH  
(cm)

Volume  
(m3) Tree

DBH  
(cm)

Volume  
(m3) Tree

DBH  
(cm)

Volume  
(m3)

1 46.5 1.977 37 22.7 0.520 73 20.7 0.154
2 42.0 1.529 38 25.0 0.495 74 15.6 0.143
3 41.4 1.514 39 26.5 0.489 75 16.5 0.142
4 40.0 1.457 40 24.2 0.484 76 18.6 0.141
5 41.5 1.312 41 24.5 0.449 77 14.3 0.132
6 35.5 1.194 42 21.0 0.422 78 16.5 0.125
7 36.5 1.158 43 24.4 0.414 79 14.5 0.124
8 37.2 1.145 44 26.3 0.382 80 15.0 0.118
9 34.0 1.074 45 21.0 0.369 81 12.0 0.116

10 35.2 0.993 46 26.3 0.336 82 11.6 0.111
11 34.3 0.958 47 21.2 0.334 83 13.5 0.111 
12 32.7 0.939 48 22.5 0.333 84 13.7 0.110
13 32.5 0.913 49 22.2 0.332 85 15.6 0.105
14 33.3 0.901 50 19.5 0.324 86 11.5 0.102
15 31.8 0.851 51 20.8 0.323 87 10.3 0.101
16 29.6 0.789 52 19.5 0.320 88 12.6 0.101 
17 28.0 0.731 53 18.8 0.316 89 15.0 0.097
18 28.7 0.726 54 20.0 0.301 90 8.5 0.093 
19 30.0 0.722 55 21.8 0.301 91 14.5 0.088 
20 30.0 0.717 56 20.2 0.272 92 16.0 0.088 
21 28.8 0.707 57 19.5 0.271 93 13.5 0.082
22 30.5 0.690 58 18.9 0.268 94 13.0 0.073 
23 26.5 0.680 59 17.7 0.254 95 14.6 0.072 
24 30.0 0.675 60 20.3 0.249 96 12.5 0.063
25 28.0 0.672 61 19.5 0.246 97 11.5 0.060
26 27.9 0.662 62 13.9 0.235 98 12.0 0.059
27 28.0 0.642 63 22.0 0.212 99 12.2 0.059
28 23.6 0.641 64 16.2 0.199 100 9.0 0.05
29 27.7 0.627 65 13.0 0.191 101 16.5 0.053
30 24.5 0.565 66 14.5 0.186 102 16.6 0.046
31 27.3 0.562 67 21.0 0.186 103 14.5 0.045
32 27.0 0.552 68 18.0 0.183 104 13.5 0.032
33 25.6 0.546 69 16.3 0.176 105 16.3 0.032 
34 23.5 0.536 70 17.7 0.173 106 13.6 0.026 
35 27.3 0.530 71 16.5 0.166 107 11.2 0.013
36 25.3 0.528 72 16.0 0.154
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For the example, V
M

 = 0.155. The confidence limit about the estimate of the mean, 
C

M
, is then given by

 
M MC = t V / n , (9.3)

where t is the value of a variable known by the name Student’s t. The variable t was 
discovered in 1908 by W.S. Gossett, who published under the pseudonym ‘Student’. 
Its value varies, depending both on how confident we wish to be of our final result 
and on the number of observations in our sample. Suppose we choose to be 95% con-
fident of our result and, given there are (n−1) = 14 degrees of freedom, as they are 
called, in our sample, then the value of t (which can be looked up in a table) is 
2.145. So, the value of C

M
 for the example is 2.145 0.155/15  = 0.218 m3.

These results from the sample are interpreted by saying that we can be 95% 
confident that the actual mean of the population lies within ±0.218 m3 of the 
mean of the sample (0.290 m3). That is, we can say we are 95% confident that 
the population mean lies within the range 0.290 ± 0.218 m3, that is, within the range 
0.072−0.508 m3. This range is called the confidence interval about the sample 
mean. In this example, the actual population mean, 0.424 m3, does indeed lie within 
that range; because a confidence level of 95% was chosen, it would be expected 
that, in 5% (100−95%) of samples taken from the population, their confidence 
intervals would not include the population mean. The confidence limit is our measure 
of the precision of the estimate of the population mean.

The determination of a confidence limit (hence, confidence interval) about an 
estimate of a population mean or population total is an extremely important part of 
an inventory of any population. It is used to indicate how worthwhile the inventory 
has been. If the confidence limit is small, relative to the sample mean, it can be said 
that the characteristics of the population have been estimated well. If it is large, it 
can be said that the characteristics have been estimated poorly.

Table 9.2 Sample of trees selected by simple random 
sampling from the population of trees in Table 9.1

Tree DBH (cm) Volume (m3)

4 40.0 1.457
20 30.0 0.717
29 27.7 0.627
41 24.5 0.449
49 22.2 0.332
67 21.0 0.186
75 16.5 0.142
85 15.6 0.105
90  8.5 0.093
96 12.5 0.063
100  9.0 0.056
102 16.6 0.046
105 16.3 0.032
106 13.6 0.026
107 11.2 0.013



In the example, the confidence limit is rather large in relation to the sample 
mean (it is 70% of the mean). If it was desired seriously to know the average tree 
stem wood volume in the example population, and the best that could be said was 
that it lay somewhere within the range 0.072−0.508 m3, then we would probably 
not be very happy with the result. However, it is most important to recognise that 
it is entirely up to the person for whom the estimate is being made to judge whether 
or not the width of the confidence interval is adequate for the purpose for which the 
estimate is required.

If the confidence interval is wider than desired, there are two options available. 
The first is to increase the size of the sample. In our example, when a new random 
sample of 30 trees was taken from the population, the mean was 0.349 m3 and 95% 
confidence interval was 0.189−0.509 m3. This is still quite a wide interval, but 
much narrower than the range of 0.072−0.508 m3, which was found with the sample 
of 15 trees. The second option is to adopt a different strategy to select the sample; 
options used in forest inventory to do this are discussed in Chap. 10.

It should be noted also that it is entirely up to the judgement of the person for 
whom the inventory is being done as to what level of confidence should be used in 
determining the confidence limit of the estimate. Quite arbitrarily in the example, it 
was chosen that we should be 95% confident about the result; that is a common level 
of confidence used in the biological sciences. For a forest inventory, the person for 
whom it is being done might be happy with a result of which he or she was only 90% 
confident, or he or she might demand a result of which they can be 99% confident.

The value of Student’s t, as used in (9.3), varies with the level of confidence 
chosen, as well as with the number of observations in the sample. So, if it was 
desired to be only 90% confident of the result in the example, the value of t to be 
used in (9.3) would be 1.761, or 2.977 if it was desired to be 99% confident. These 
values are smaller and larger respectively than the value of 2.145 which was used 
to be 95% confident. The width of the corresponding confidence intervals would be 
progressively wider the more and more confident of the result it was desired to be. 
Of course, it is impossible to ever be 100% confident of the result from a sample; 
the confidence interval would be infinitely wide in that case. To be 100% confident, 
each and every individual in the entire population would have to be measured. 
Tables with values of Student’s t are provided commonly in statistics textbooks, 
and computer packages often provide functions with which they can be 
calculated.

9.4 Calculating the Population Statistics 97
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Chapter 10
Sampling Theory

10.1 Sampling Techniques and Their Efficiency

As mentioned in Sect. 9.4, there are various techniques which can be adopted to 
select a sample from a population. In the example used in Chap. 9, the sample 
(Table 9.2) was selected at random from the population (Table 9.1) in such a way 
that each and every tree in the population was equally likely to have been included 
in the sample. Speaking in mathematical statistical terms, this is a simple random 
sample (often abbreviated as SRS), that is, a sample in which each and every sam-
pling unit in the population has the same probability of selection (or in common 
parlance, the same chance of being selected). In the example, there were 107 trees 
in the population and 15 trees were to be sampled. Thus, the probability of selection 
of any of the 107 trees was 15/107, that is, 0.140, or a 14% chance.

Simple random sampling is the easiest technique by which a sample might be 
selected, but it is certainly not the only one. Importantly, there are other sampling 
techniques, which have the great advantage that they lead to a reduction in the size 
of the confidence limit of whatever it is, that is being estimated about a population. 
Sampling forests can be a time consuming and expensive task. So, it is obviously 
desirable to obtain the most precise estimate possible of the characteristics of the 
forest population, with the least sampling effort. Again speaking formally, one 
sampling technique which leads to a more precise population estimate (that is, an 
estimate with a lower confidence limit) than another is said to be a more efficient 
technique. This chapter will describe several more efficient sampling techniques, 
which are used for sample selection in forest inventory.

10.2 Sampling with Varying Probability of Selection

One method to achieve more efficient sampling is to assign different probabilities 
of selection to the sampling units in the population, rather than using equal proba-
bilities, as in simple random sampling (Sect. 10.1). This means that some sampling 
units will more likely be included in a sample than others. Obviously, there will 
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have to be specific rules by which those different probabilities are assigned to the 
different sampling units, if this is to achieve more efficient sampling and if the 
sampling is to remain objective; those rules will be discussed in detail below.

Once such a sample has been selected, the computations necessary to determine 
the estimate of the population mean and its confidence limit, are rather more 
complicated than was the case for simple random sampling (Sect. 9.4); the mathe-
matical details are given in Sect. 10.2.1. In Sects. 10.2.2 and 10.2.3, two different 
methods of applying this form of sampling are described.

10.2.1 The Population Mean and Its Variance

The mathematical detail and notation here follow closely those of the comprehen-
sive and mathematically rigorous text on sampling in forest inventory of Schreuder 
et al. (1993). Suppose a population contains a total of N sampling units, from 
which a sample is to be drawn. Suppose that a probability of selection p

k
 (k = 

1…N) was assigned to the kth sampling unit; that is, there is a chance p
k
 that this 

sampling unit will enter any sample taken from the population. Suppose also that 
the probability that both sampling units k and l enter the sample is p

kl
. Assume the 

sampling is done without replacement (Sect. 9.4).
Assume a sample of size n (<N) has been selected randomly from the population, 

using the probabilities of selection assigned to each of the sampling units (ways of 
doing this are discussed below). Suppose that some variable of interest (for example, 
tree stem wood volume) was then measured on each sampling unit included in the 
sample, and had a value y

i
 (i = 1…n) in the ith sampling unit (with the corresponding 

probabilities of selection assigned to those sampling units now denoted as p
i
, 

i = 1…n).
The mean of the variable of interest for the population, Y

M
, can be estimated 

from the sample data as (adapated from 3.7 of Schreuder et al. 1993)

 M 1
( /  /)i ii n

Y y p N
= ¼

é ù= ë ûå  (10.1)

and its variance, V
M

, can be estimated as (adapted from 3.9 of Schreuder et al. 
1993)

 
( ){ }2 2

M , 1 ,
1 / 2 {[( ) / ][ / / ] },i j ij ij i i j ji j n i j

V N p p p p y p y p
= ¼ ¹

= - -å
 

(10.2)

where

 p
ij
 = p

i
p

j
N(n – 1)/ [n(N – 1)]. (10.3)

Note that in (10.2) the mathematical expression Σ
i,j=1…n, i≠j 

denotes the summation of 
the term that follows the expression, as both i and j take successive values 1,2,3… 
up to n, except that terms where i=j are not included in the summation.
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The estimate of the confidence limit of the population mean, C
M

,
 
is

 C
M

 = t MV , (10.4)

where t is Student’s t, for whatever probability level of confidence, is desired and 
with (n−1) degrees of freedom.

Different sampling methods, which apply this theory, vary in the way in which 
the probabilities of inclusion of sampling units in the sample (the p

k
) are assigned. 

Two such methods, useful for forest inventory purposes, are considered in Sects. 
10.2.2 and 10.2.3, sampling with probability proportional to size and sampling with 
probability proportional to prediction.

10.2.2 Probability Proportional to Size

Sampling with probability proportional to size (often abbreviated as PPS sampling) 
assigns a probability of selection to every sampling unit depending on the size of 
the object which makes up the sampling unit. Before setting out to take the sample 
with this method, there must be available some measure of this size, for each and 
every one of the N sampling units in the entire population.

This measure must be easy and quick to measure and must be what is known as 
a covariate variable. A covariate is a variable which is correlated, at least partially, 
with the variable of interest it is desired to estimate ultimately for the population. 
In PPS sampling, the covariate must also be correlated positively with the variable 
of interest. Having a positive correlation means that sampling units with a larger 
value of the covariate tend to have a larger value of the variable of interest (a nega-
tive correlation would mean that a larger value of the covariate would tend to be 
associated with a smaller value of the variable). Furthermore, in PPS sampling the 
relationship between the covariate and the variable of interest should be represented 
reasonably by a straight-line. If the relationship is not a straight line, it can some-
times be made so by transforming the covariate values in some way, say, by squaring 
them or by taking their logarithms; the transformed values of the covariate would 
then be used for PPS sampling.

In the example used in Sect. 9.4, the diameter at breast height over bark of all 107 
trees in the population had been measured (remember it is being assumed for the 
example that only stem volumes of trees included in a sample are actually measured). 
The tree diameters are listed in Table 9.1. Tree diameter is rapid and easy to measure; 
little time and effort would be wasted in doing so for every individual in the example 
population. Furthermore, we know from Chap. 6 that the diameter of the tree is likely 
to be quite highly and positively correlated with tree stem wood volume. However, 
that relationship is unlikely to be linear, whereas the relationship between tree stem 
wood volume and the square of tree diameter (in effect, tree basal area) is likely to be 
linear. That is, the square of tree diameter might be an appropriate covariate variable 
to use for the example, where the mean tree stem wood volume is the variable of 
interest it is desired to estimate ultimately for the population.

10.2 Sampling with Varying Probability of Selection 101
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It is not uncommon to have available covariate information for every sampling 
unit in a forest population. For a large forest area, appropriate covariate information 
might be obtained from aerial photographs or satellite images of the forest. For 
example, suppose it was desired to undertake an inventory to estimate the wood 
volume of the trees in a large forest area. If aerial photographs existed of the forest, 
it might be possible to use them to determine the height of the trees at any point 
over the entire forest population. As discussed in Chap. 6, height is often corre-
lated, at least partially, with tree stem wood volume. Hence, that information on 
tree height might be useful covariate information in undertaking PPS sampling to 
determine wood volume in the forest. In Chap. 13, there is further discussion of the 
various remote sensing techniques in use today in forestry and which might be used 
to provide covariate information over large forest areas.

Given these considerations, PPS sampling will be applied to the example in 
Sect. 9.4. Let the value of the covariate of the kth sampling unit in the population be 
donated by c

k
 (k = 1…N). As discussed above, the square of tree diameter at breast 

height over bark should be an appropriate covariate value for this example. Thus, 
from Table 9.1, c

1
 = 46.52 = 2,162.25, c

2
 = 1,764.00… c

107
 = 125.44.

Let the size of the sample to be selected be n (=15 in the example). For PPS 
sampling, the probability of selection of the kth sampling unit is then calculated as

 [ ] ( )1
/ / .k k kk N

p n N c c
= ¼

é ù= ë ûå  (10.5)

For the example, (Σ
k=1…N

c
k
) = 58,939.42 (the sum of the squared diameters over the 

entire 107 trees in the population), so, p
1
 = (15/107) × 2,162.25/58,939.42 = 

0.00514, p
2
 = 0.00420… p

107
 = 0.000298.

Now, a sample of size n is selected randomly from the population, except that 
the sampling is done so that the probability of inclusion of any particular sampling 
unit is determined by its assigned probability, as calculated using (10.5). To do this, 
when any one sampling unit is being considered for inclusion in the sample, a value 
is selected at random from within the range of the probabilities which have been 
assigned to the sampling units in the population (0.000172−0.00514 in the example, 
the lowest value being p

90
, for the tree of the smallest diameter, and the highest 

being p
1
, for the tree of the largest diameter); computer random number generation 

programs are adapted easily to provide such random values. If the random value is 
less than the value of p

k
 for the sampling unit being considered, then that sampling 

unit is included in the sample. This process is continued until the required number 
of sampling units (n) has been included in the sample.

In this process, it is not particularly important in which order sampling units are 
visited. However, to have the best chance of selecting a sample which represents 
reasonably the whole population, sampling units spread generally across the entire 
population should have been visited before the sample selection process has been 
completed.

Table 10.1 lists a sample of 15 trees that were selected for the example, using 
this process. A study of that table will show that this sampling technique has led to 
the inclusion of a higher proportion of trees of larger diameter in the sample than 
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of trees of smaller diameter. This is a direct consequence of PPS sampling. Because 
of the required positive correlation between the covariate and the variable to be 
estimated, it favours the inclusion of sampling units which have a larger value of 
the covariate and, therefore, a larger value of the variable which is ultimately being 
estimated. It can be proved mathematically that this is likely to lead to be a more 
efficient sampling technique than simple random sampling.

When (10.1−10.4) are applied to the data of the sample in Table 10.1, they 
give an estimate of the mean stem wood volume of the population and its cor-
responding confidence interval, as shown in the second row of Table 10.2. 
Comparison of this confidence interval with that from simple random sampling 
(as calculated in Sect. 9.4 and shown in the first row of Table 10.2), shows it is 
much narrower for PPS sampling. That is, PPS sampling has indeed been a more 
efficient technique than simple random sampling.

10.2.3 Probability Proportional to Prediction

Before a sample was selected using PPS sampling (Sect. 10.2.2), it was necessary 
to have available a value of a covariate for each and every sampling unit in the 
population. In the case of sampling with probability proportional to prediction 
(often abbreviated as 3P sampling and sometimes called Poisson sampling), the 
advantages of the efficiency of PPS sampling can be achieved, but without the need 
to have the covariate values available in advance. Instead, covariate values need be 
determined only for those sampling units which are considered for inclusion in the 
sample and only at the time the sampling is being done in the field.

Table 10.1 Sample of trees, selected by sampling with 
probability proportional to size (PPS sampling), from the 
population of trees in Table 9.1

Tree DBH (cm) Volume (m3)

5 41.5 1.312
11 34.3 0.958
20 30.0 0.717
24 30.0 0.675
26 27.9 0.662
30 24.5 0.565
37 22.7 0.520
38 25.0 0.495
49 22.2 0.332
67 21.0 0.186
75 16.5 0.142
90  8.5 0.093
96 12.5 0.063
102 16.6 0.046
107 11.2 0.013

10.2 Sampling with Varying Probability of Selection 103
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Before setting out to take a 3P sample, the only extra information required about 
a population is to know the largest and smallest values of the covariate which will 
occur anywhere in the population. This will usually require that a preliminary 
survey be made of the population, to determine the extremes that occur in it.

Selection of a 3P sample then proceeds as follows. In the field, the sampler visits 
a sampling unit; as with PPS sampling, the order in which sampling units are 
visited is not particularly important. As a sampling unit is visited, the sampler 
obtains the value of the covariate for that sampling unit, using whatever quick and 
easy measurement technique is appropriate. Traditionally in 3P sampling, the covariate 
has been chosen to be the very thing which is being estimated in the inventory (in 
our example, the stem wood volume of a tree). The covariate value has then been 
obtained simply by the observer estimating its value visually; certainly, this 
provides the covariate value very quickly and easily. If this technique is used, the 
better the sampler is at making the estimates visually, the more efficient will be the 
result; this requires that samplers have preliminary training, to get their estimation 
eye ‘in’, before doing the sampling. However, it is not essential that the covariate 
value be obtained that way. As was found for sampling with probability proportional 
to size (Sect. 10.2.2) in our example, the square of tree diameter was a perfectly 
adequate covariate; it can be obtained quickly and easily simply by measuring the 
diameter of the tree concerned.

Once the covariate value has been obtained for a sampling unit under consideration, 
the sampler selects a value chosen at random from within the range of the minimum 
and maximum values of the covariate, as determined for the population before sample 
selection started. To provide the random values, the sampler might carry a calculator 
or laptop computer in the field or might simply refer to a list of such values, printed 
before the sampling started. If the covariate value is greater than or equal to the 
random value chosen for that sampling unit, the sampling unit is then included in 
the sample. The measurement crew accompanying the sampler would then measure 
the actual value of the variable of interest on that sampling unit.

If the covariate value is less than the random value, that sampling unit is simply 
ignored and the sampler moves on to the next sampling unit. This process 

Sampling method Mean 95% Confidence interval

SRS 0.290 0.072−0.508
PPS 0.364 0.302−0.426
3P 0.435 0.372−0.499
Stratified RS 0.403 0.220−0.587
Model 0.403 0.365−0.441
Model (bootstrap) 0.403 0.347−0.447

Table 10.2 For various types of sampling, estimates of the population mean 
stem volume (m3) and its 95% confidence interval for the tree population of 
Table 9.1. SRS−simple random sampling, PPS−sampling with probability 
proportional to size, 3P−sampling with probability proportional to prediction, 
Stratified RS−Stratified random sampling, Model−model-based sampling. 
The true mean of the population was 0.424 m3



continues until the required number of sampling units has been selected to make 
up the sample.

The disadvantage of 3P sampling is that many sampling units may be visited and 
rejected from the sample. If an inventory is being carried out of a large forest area, 
a lot of time is usually spent by the sampler and the measuring crew moving around 
the forest to visit sampling units, which may be located in difficult terrain. In the 
case of 3P sampling, a lot of time and effort can be spent getting to a sampling unit, 
only to have it rejected immediately from the sample. This is not a problem for our 
example; the population being considered there consists only of the trees in a single 
forest plot, so there is little time wasted by the sampler moving about the plot and 
finding trees to be included in the sample.

Table 10.3 lists a sample of 15 trees that were selected from the example population 
(Table 9.1) using 3P sampling. To make this selection, I used tree stem volume as 
the covariate and used visual estimation to obtain the covariate values. To select 
this sample, I had to visit and estimate the volume of 66 trees, a rather high propor-
tion of the total 107 trees in the plot. Study of Table 10.3 will show that this sam-
pling technique has led to the inclusion of a higher proportion of trees of larger 
diameter in the sample than of trees of smaller diameter, just as was the case with 
PPS sampling.

Suppose that the minimum and maximum values of the covariate which were 
assumed to occur in the population are denoted as c

m
 and c

x
 respectively. For the exam-

ple, I assumed c
m
 = 0.01 m3 and c

x
 = 2 m3. Suppose a number n

v
 (=66 in the example) 

sampling units in the population were visited before the required n (=15 in the example) 
were selected in the sample. Suppose that the covariate value measured on the ith sampling 
unit included in the sample was c

i
 (i = 1…n) (these values are not shown in Table 10.3, but 

Tree DBH (cm) Volume (m3)

3 41.4 1.514
13 32.5 0.913
20 30.0 0.717
21 28.8 0.707
22 30.5 0.690
25 28.0 0.672
27 28.0 0.642
34 23.5 0.536
38 25.0 0.495
51 20.8 0.323
57 19.5 0.271
62 13.9 0.235
65 13.0 0.191
71 16.5 0.166
80 15.0 0.118

Table 10.3 Sample of trees, selected by sam-
pling with probability proportional to predic-
tion (3P sampling), from the population of 
trees in Table 9.1
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the actual, measured tree volumes y
i
 are). Then, for 3P sampling, the probability 

of selection of the ith sampling unit in the sample, p
i
, is given by

 
v( / )( ) / ( ).i i m x mp n N c c c c= - -  (10.6)

When (10.1−10.4) were applied to the sample data in Table 10.3, the estimate of 
the population mean stem wood volume and its confidence interval were as shown 
in the third row of Table 10.2. In this example, 3P sampling was even more efficient 
than PPS sampling.

It should not be assumed from this example that 3P sampling is always more 
efficient than PPS sampling. The difference here simply reflects chance variation 
in the two processes in deciding which sampling units were to be included in the 
sample and how closely the covariate used correlated with the variable being measured; 
the higher the correlation, the more efficient will the sampling be.

It should be noted that the treatment of 3P sampling here differs from that in 
other texts (e.g. Shiver and Borders 1996; Avery and Burkhart 2002; Iles 2003). It 
contains some original elements, reported otherwise only as a conference paper 
(West 2005). In particular:

•	 Defining	the	probability	of	inclusion	of	a	sampling	unit	in	the	sample	by	(10.6)	
allows application of the already well established, general theory of sampling 
with varying probability of selection (10.1−10.3)

•	 Visual	estimation	of	the	variable	of	interest	on	each	sampling	unit	is	not	the	only	
way to obtain a covariate value in 3P sampling. Other variables, which may be 
estimated visually or measured by other methods, can provide perfectly suitable 
covariate values

•	 It	is	unnecessary	to	visit	and	obtain	a	value	of	the	covariate	for	each	and	every	
sampling unit in the entire population. Previously, this was the standard protocol 
prescribed for 3P sampling. It renders it impractical as a sampling method for 
any but very small populations. In the present treatment, it is necessary to visit 
only as many sampling units as are required to achieve the sample size desired. 
However, before sampling starts, failure to determine correctly the largest and 
smallest values of the covariate, which will be encountered in the population, 
will render the present method unworkable.

10.3 Stratified Random Sampling

Sampling with varying probability of selection (Sect. 10.2) is not the only way to 
achieve more efficient sampling. Another method used commonly is to organise the 
sampling units into groups, or strata as they are called, so that the variation between 
the sampling units in any one group (stratum) is less than the variation over the 
whole population. This is called stratified random sampling.



Consider a large area of a particular type of forest (such as a plantation forest or 
a rainforest). Across the area, the forest will vary in age or stage of development, 
as will the topography, climate and type of soil. All of these will affect the amount 
of wood present at any point in the forest and determine the amount of variation in 
wood volume across the whole area. So, stratification of the forest area into smaller 
areas based on these factors would be expected to reduce the variation in any one 
of the strata when compared with the variation over the whole population. The 
more and more the variation between sampling units within any one stratum can be 
reduced, the more efficient will stratified random sampling be.

In effect, the information used to define the strata can be thought of as covariate 
information, just as was required in sampling with probability proportional to size 
(Sect. 10.2.1). However, in stratified random sampling the covariate information 
might be categorical, rather than numerical; for example, different soil types might 
constitute different categories on which to base the stratification. Information from 
several different types of covariate might be used as well. Thus, strata defined by 
soil type might be subdivided further into strata defined also by age of the forest.

To illustrate how stratified random sampling works, it will be applied to our 
example from Sect. 9.4. Suppose the trees in that population (Table 9.1) were 
divided into three strata, based on their diameters at breast height over bark. 
Suppose the first stratum was made up of trees with diameters in excess of 25.5 cm 
(there are 35 such trees in the example); this might be called the ‘large tree’ stratum. 
The second stratum (the ‘medium tree’ stratum) contained trees with diameters in 
the range 16.5−25.5 cm (37 trees). The third (the ‘small tree’ stratum) contained 
trees with diameters less than 16.5 cm (35 trees).

Since the diameter of the tree is expected to be correlated with stem volume, it 
would be expected that the variation in stem volume in any one of these three strata 
would be less than the variation over the whole population. In reality, this is a most 
unlikely form of stratification to do; where information, like tree diameter, is avail-
able for each and every sampling unit in the population, a sampling technique like 
PPS sampling will make much better use of that information and would be expected 
to be a more efficient sampling method than stratified random sampling. However, 
for the sake of our example, we will persist with those three strata.

Suppose a sample of 15 trees was now selected at random from the population. 
In doing so, the number of trees selected from each stratum will be approximately 
proportional to the stratum size. The simple random sample selected earlier 
(Table 9.2) will serve for this purpose. From the diameters of the trees in that 
table it will be seen that this sample includes three trees from the large tree 
stratum, five from the medium tree stratum, and seven from the small tree stratum. 
These numbers of trees are certainly only approximately proportional to the stratum 
sizes, which illustrates the amount of variation that can result when random 
samples are selected.

Suppose there were H strata. Suppose the hth stratum (h = 1…H) contained N(h) 
sampling units in total and n(h) of those were included in the sample. Suppose a 
value of a variable of interest, y(h,i), was measured on the ith [i = 1…n(h)] sampling 
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unit which was sampled in the hth stratum. The estimate of the mean of the variable 
of interest in the hth stratum, y

m
(h), is given by

 ( ) ( )( ) ( )
1

,  / . m i n h
y h y h i n h

= ¼
é ù=
ë ûå  (10.7)

The estimate of the population mean, Y
M

, is then given by (following 3.14 of 
Schreuder et al. 1993, but with slight modification to determine the population 
mean, rather than total)

 ( ) ( ){ }M 1
,mh H

Y W h y h
= ¼

= é ùë ûå  (10.8)

where W(h) = N(h)/N and of its variance by (following 3.16 of Schreuder et al. 
1993, with modification also for variance of the mean, rather than of the total)
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Please note the erratum to this equation at the end of the book. (10.9)

where f(h) = n(h)/N(h). The confidence limit can then be determined using (10.4), 
with the number of degrees of freedom for t being approximately {∑

h=1...H
[n(h)]}-h 

(Satterthwaite 1946; Cochran 1977; Gregoire and Valentine 2008).
For the example, H = 3, N = 107, N(1) = 35, N(2) = 37, N(3) = 35, n(1) = 3, n(2) = 5, 

n(3) = 7, and the values of y(h,i) are the measured tree stem volumes in Table 9.2, for the 
samples in the respective strata. The results of applying (10.7−10.9) to these data are 
shown in the fourth row of Table 10.2. In this case, stratified random sampling has 
produced a more precise estimate than simple random sampling, but has been less precise 
then PPS or 3P sampling. This is to be expected. PPS and 3P sampling make better  
use of the specific values of covariate information, whereas stratified random sampling 
only used that information to subdivide the population into three tree size strata.

10.4 Model-based Sampling

The last type of sampling to be discussed here is called model-based sampling. As 
with PPS sampling, model-based sampling is appropriate where the value of at least 
one covariate has been measured initially, on each and every sampling unit in the 
population. Importantly however, model-based sampling can be used to even better 
advantage than PPS sampling if there is more than one covariate available for each 
sampling unit.

In model-based sampling, the results from taking a sample from the population 
are used to establish a regression equation (Sect. 6.2.1) relating the variable of 
interest to the covariate(s). The fitted regression equation is then used to predict the 
values, from the covariate(s) values, of the variable of interest on each and every 
sampling unit in the population.

10.1007/_10


There are several advantages with model-based sampling, over other forms of 
sampling, as follow:

•	 Any	number	of	covariates	may	be	used,	which	may	allow	much	greater	 sam-
pling efficiency

•	 The	covariates	may	be	correlated	either	positively	or	negatively	with	the	varia-
ble of interest in the population and still be just as useful in model-based sam-
pling; only a positive correlation is useful in PPS or 3P sampling

•	 The	 full	 power	 of	 regression	 analysis	 can	 be	 brought	 to	 bear	 to	 establish	 a	
relationship between the variable of interest and the one or more covariates for 
which information is available in the population. This allows relationships with 
very complex functional forms to be used, where these provide the best relationship 
between the variable of interest and the covariate(s)

•	 The	way	in	which	the	sample	is	selected	from	the	population	need	not	be	as	for-
mal as in the other sampling methods. Texts on regression analysis discuss the 
optimum sort of information required to fit regression relationships reliably. 
Suffice to say that the data collected should encompass generally the range of 
values of the covariates that occur across the population, and that the sampler 
should have been objective in selecting the sample (that is, no sampling unit 
should have been included in the sample through any prejudice of the sampler).

10.4.1 Applying Model-Based Sampling

Model-based sampling will be illustrated for our example (Sect. 9.4), using the 
square of tree diameter as the covariate variable. For this illustration, suppose the 
sample selected for simple random sampling (Table 9.2) was available to us. Figure 
10.1 shows tree stem wood volume plotted against the square of diameter at breast 
height over bark for the 15 trees in that sample.

For these data, there appears to be a simple straight-line relationship between 
stem volume (y

i
, m3) and the square of diameter (x

i
 = D

i
2, cm), where i = 1…15 for 

the 15 observations in the sample. Hence, an appropriate regression equation to fit 
to those data might be a simple straight line, that is, the equation

 y
i
 = a+bx

i
, (10.10)

where a and b are parameters of the equation. When ordinary least-squares regres-
sion (the form of regression analysis used normally in the biological sciences and 
which is discussed in all texts on regression analysis) was used to fit these data to 
(10.10), estimates were found for a and b of a = −0.121 and b = 0.000951. The fit 
to the data for this model is shown as the solid line in Fig. 10.1.

The estimate of the population mean stem wood volume, Y
M

, is determined by 
using this model to predict wood volume of each and every tree in the population 
(Table 9.1) from its diameter and adding up the predicted values, so that
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where x
k
 is the square of the diameter at breast height of the kth tree in the popula-

tion (k = 1…N, where N = 107 in the example). The result, an estimate of 0.403 m3, 
is shown in the fifth row of Table 10.2.

Where a simple straight-line model such as 10.10 has been used for model-based 
sampling, an estimate of the variance of the mean, V

M
, can be determined from the 

n observations in the sample as (see 6.17−6.19 of Shiver and Borders 1996, with 
slight rewriting of their 6.18),

 ( ) ( ) [ ]{ } [ ] ( ){ }2 22
M M M1 1

/ 2 2 / ,i ii n i n
V y y b x x n N Nn

= ¼ = ¼
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(10.12)

where y
M

 is the mean of the measured stem wood volumes in the sample and x
M

 is 
the mean of the squares of the diameters at breast height of the trees in the 
sample.

Equation (10.4) can be used to determine the confidence limit, although in 
this case with Student’s t having (n−2) degrees of freedom; the resulting confi-
dence interval is shown in the fifth row of Table 10.2. In this example, model-
based sampling appears to have been the most efficient of all the methods 
tested here.
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Fig. 10.1 Scatter plot of tree stem wood volume against the square of tree diameter at breast 
height over bark for the sample selected for simple random sampling (Table 9.2). The solid line 
shows the ordinary least-squares regression, straight-line fit to the data



It is very important to note that (10.12) applies only when the regression model 
fitted in model-based sampling is a simple straight line, that is, like (10.10). If other 
regression models are used (perhaps a multiple regression, where other covariates 
are included in the model, so that it has more than two parameters, or where a 
non-linear regression model has been fitted − crudely speaking, a model in which 
the parameters are not arranged in a sequence of additive terms as in 10.10), then 
(10.12) is inappropriate. In general, mathematical statisticians have not yet derived 
equations to give the required variance estimate when regression models other than 
a straight line have been used in model-based sampling.

Fortunately, a technique known as bootstrapping is available to make an 
estimate of the variance. Bootstrapping uses the data from the sample in what 
is known as a Monte Carlo or simulation technique. These terms mean that 
bootstrapping involves averaging many trials which involve random processes; 
the use of ‘Monte Carlo’ to describe such techniques derives from the random 
nature of gambling at the casinos there.

For the example, bootstrapping would be applied as follows. Given the original 
sample of 15 trees measured for stem volume (Table 9.2), a new sample, also of size 
15, would be selected from the original sample by simple random sampling from it 
with replacement. That is, when any tree has been selected from the original 15 into 
the new sample, it would be kept in the list of 15 and be eligible to be selected again. 
When this is done, about 37% of the original sample points will be duplicated in 
the new sample. The new sample would then be used in exactly the same way as the 
original sample. Model (10.10) would be fitted by least-squares regression to its data 
to give new values for the parameters a and b. Equation (10.11) would then be used 
to get a new estimate of the population mean stem wood volume.

This process would then be repeated a large number of times (say, 1,000) with dif-
ferent, new samples being selected with replacement from the original sample each 
time. The 1,000 new estimates of the population mean would then be arranged in order. 
The particular estimates within that 1,000 would then be found which are spaced equally 
above and below the estimate of the population mean from the original sample (0.403 m3 
in the example) and within which 95% of the 1,000 new estimates lie. These two values 
can then be considered the upper and lower limits of the 95% confidence interval. 
Probability levels other than 95% can be determined similarly using this process.

The bootstrap confidence interval determined for the model-based sampling 
example is shown in the last row of Table 10.2. It is quite close to that deter-
mined using (10.12). It is inevitable that there will be some differences between 
a confidence interval determined by bootstrapping and one obtained from a 
mathematically formulated variance predictor such as (10.12). We are not really 
able to say which is the ‘best’ estimate of the interval of confidence, although 
one might prefer generally the mathematically derived predictor, because its 
properties are known formally.

Bootstrapping has been a controversial technique amongst mathematical statisticians. 
However, sufficient has been learnt about its properties that it seems to be accepted 
now as appropriate, whenever a more formal alternative is not available. It could be 
applied to determine confidence intervals for any of the sampling techniques examined 
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in this chapter. However, since formal mathematical estimators of variance have been 
developed for all of them, except model-based sampling, those estimators would be 
preferred generally to bootstrapping. The jackknife technique is an alternative to boot-
strapping (Kangas 2006a), but will not be considered further here.

10.5 Choosing the Sampling Technique

The discussion of the various sampling techniques should have made it apparent 
when each is appropriate.

If no prior information is available about the population, there is no option but 
to use simple random sampling.

The technique which then requires the least prior information about the population 
is sampling with probability proportional to prediction (3P sampling). To apply it, an 
initial survey must be undertaken to determine the largest and smallest values that 
occur in the population of the variable which is to be used as a covariate. The better 
this maximum and minimum are determined, the fewer will be the number of sam-
pling units which have to be visited to find those to be included in the 3P sample.

The other sampling techniques discussed here all require that covariate information 
is available for each and every sampling unit in the population. These covariates 
should be variables or characteristics of the population for which values can be 
obtained relatively easily and inexpensively. Furthermore, they should be at least 
partially correlated with the variable of interest to be estimated in the population.

Covariates which do not have specific numerical values, such as the type of forest 
or the type of soil, can be very useful in stratifying the population, so that the 
variation in the variable of interest is less in each stratum than it is in the whole 
population. When this type of information exists, stratified random sampling might 
be the most efficient sampling technique.

Where covariates have specific numerical values, sampling with probability 
proportional to size (PPS sampling) or model-based sampling might be the most 
efficient sampling techniques. PPS sampling would be appropriate when there is a 
single covariate only, which is correlated positively with and related linearly to the 
variable of interest. Where there are two or more covariates available, where the 
relationship between a covariate and the variable of interest is not linear or where 
the correlation between the variable of interest and the covariate is negative, model-
based sampling might be most appropriate. In either case, the higher the degree 
of association between the covariate(s) and the variable of interest, the more effi-
cient will be those techniques.

Apart from the sampling technique used, the other determinant of the precision 
of the inventory (the size of its confidence limit) is the size, n, of the sample. The 
larger is n, the smaller is the confidence limit likely to be. If a sample has been 
selected and the confidence limit is larger than is desired, then the sample size must 
be increased (or a different sampling technique employed) to obtain a smaller limit. 
Once some sampling has been done to obtain some estimate of the variation in the 



population, mathematical techniques can be employed to estimate how large the 
sample size needs to be to obtain a confidence limit of the required size. These 
techniques will not be discussed here; reference to them can be found in more 
comprehensive texts on sampling practice.

Lastly, it must be stressed that this chapter has only introduced the subject of 
sampling techniques. Many and much more complex variations exist to deal with 
the problems encountered in sampling forests; more advanced texts (e.g. Schreuder 
et al. 1993; Shiver and Borders 1996) should be consulted to learn more about 
these. However, the discussion here should give the reader a basic understanding of 
the principal sampling techniques used today in forest inventory.
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Chapter 11
Conducting an Inventory

11.1 Objectives

Chapters 9 and 10 have established the background to undertaking an inventory of 
a forested area. The first practical step in doing so is to establish very clearly, with 
the forest owner, the objectives of the inventory, to ensure it will achieve whatever 
the owner has in mind.

Forest owners differ greatly both in the size and nature of their forest holdings and 
in the purposes for which they own them. At one end of the scale is the farmer, who 
may own some tens of hectares of forest being used to beautify the farm, as an ‘envi-
ronmental’ forest or as an investment for retirement. At the other end of the scale are 
governments or corporations, which own large areas of native and/or plantation for-
ests with a myriad of uses, ranging from timber production to water catchment protec-
tion, to wilderness or biodiversity conservation or to recreation for people.

The scope of the inventory task will differ greatly at these extremes. At the 
smaller end of the scale, a single person may be able to carry out the inventory. At 
the bigger end, large teams of both professional and technical staff may be employed 
permanently to carry out the inventory and analyse and interpret its results.

Nevertheless, whatever the scale of inventory, its objectives must be quite clear. 
They will determine exactly what measurements are to be made and the nature and 
scale of sampling necessary to estimate whatever variables are of interest across the 
whole forest. It may be only wood quantities in the forest that are required. However 
for larger and more complex forests, information on many other characteristics of 
the forest ecosystem may be needed.

The methods necessary to measure those different characteristics may differ so 
greatly that each requires a quite separate inventory. Trees do not move, so they can 
be easily located and measured on different occasions if necessary. Animals hide, 
move about and may bite, so sampling techniques necessary to locate and measure 
them are quite different from those appropriate for trees. If the water resources 
provided by a forested catchment are to be assessed, sampling may concentrate on 
stream outflows and water-holding characteristics of the soils within the catchment. 
This book concentrates on inventory of tree qualities in forests and particularly on 
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wood quantities; other specialist texts will need to be consulted if the interest is in 
inventory of other forest ecosystem characteristics.

Once it has been established clearly with the forest owner what characteristics 
of the forest are to be estimated, consideration needs to be given to the level of 
confidence with which the owner wishes to know the answer and, hence, what 
width of confidence interval will be acceptable. These will determine the amount 
and type of sampling which will be required.

Thus an owner concerned principally as to whether or not an endangered plant 
species occurs within his or her forest area may require only to be 75% sure that its 
numbers lie within ±20% of the estimate of those numbers. A potential forest 
owner, wishing to value the wood resource in a forest before purchasing it, may 
wish to be 95% sure that its quantity lies within ±5% of the amount estimated by 
the inventory. The work and costs involved in undertaking the inventory will be 
greater the more confident the owner wishes to be of the answer.

These statistical concepts are often difficult for lay people to appreciate. Even if 
the forest owner does not understand them fully, the professional person undertak-
ing the inventory needs to at least infer what the requirements of the owner are and 
establish what they should be in negotiation with him or her. Only then will it be 
possible to judge the scope of the inventory task and, hence, how much it will cost. 
Perhaps even more importantly for the professional, it will allow him or her to 
defend the quality of the results, if a legal dispute should arise with a disgruntled 
owner about the quantities which were estimated.

11.2 Approach and Methods

It would be possible to consider each and every tree in a forest area as being the 
population to be sampled in an inventory. Sampling could be done amongst those 
individuals and their total number would then be used to convert the results from 
the sample to the required estimate for the total forest.

For any but a very small forest area, this would be impractical. To travel hither 
and thither over a large forest area to sample individual trees would require far too 
much time and be unnecessarily arduous. Accordingly, forest inventory is usually 
carried out by sampling stands scattered throughout the forest area.

Ultimately, this provides an estimate of the stand mean and its confidence limit 
over the entire forest area. For example, the inventory might determine that the 
mean stand stem wood volume over the entire forest is 158 m3/ha, with a 95% 
confidence limit of ±17 m3/ha. To determine the stem wood volume available over 
the entire forest, and its confidence limit, simply involves multiplying these values 
by the area of the forest. Thus, if the entire forest had an area of 8,471 ha, it would 
be estimated that there was 1.34 million m3 (8,471 × 158/1,000,000) of stem wood 
in the whole forest area, with a 95% confidence limit of ±0.14 million m3 (8,471 × 
17/1,000,000). That is, it would be estimated that we could be 95% sure that the 
stem wood volume in the entire forest lay within the range 1.20–1.48  million m3 
(1.34 ± 0.14).



Large forest estates often have a lot of information already collected about them. 
Maps may exist of forest types, soils, topography or climate variation. There may 
be air photos or satellite imagery available (Chap. 13). There may be reports avail-
able of previous management undertaken, of previous inventories or of ecological 
research done in the forest. All this information should be consulted and may prove 
useful in planning the inventory. At least it might provide basic maps of the forest 
areas being considered. Even better, it might allow stratification of the forest to 
allow stratified random sampling (Sect. 10.3). At best, it might provide covariate 
values across the entire forest estate, which could be used for sampling with prob-
ability proportional to size (Sect. 10.2.2) or model-based sampling (Sect. 10.4).

All this information will assist in defining exactly the population which is to be 
measured. It will help also to make decisions about what sampling technique to use 
and what the sample size should be; these matters were discussed in Sect. 10.5. 
Decisions will have to be made too about the measurement techniques to be used 
for stands included in the sample. Plot measurement (Sect. 8.4.1) might be used or, 
increasingly today, point sampling (Sect. 8.4.2) might be preferred; issues involved 
with measuring plots and point samples are discussed in Sect. 11.6. Ultimately, all 
these decisions will have to be weighed, to reach some compromise as to how to 
carry out the inventory in the most cost-effective way, given the prior information, 
equipment and staff resources available.

11.3 Forest Area

It is clearly crucial to the approach described in Sect. 11.2 that the total area of the 
forest population be determined. If stratified random sampling is to be used, the 
area of each stratum must be measured also. It is essential to have an unbiased and 
precise estimate of these areas, since the results of sampling are eventually multi-
plied by them to determine the final estimate of whatever is being measured over 
the whole forest. Any error in forest area is immediately transferred to the final 
result; poor area measurements are often one of the biggest sources of error in an 
inventory estimate.

For large and complex forests, measurement of area can be a difficult task. It 
may require the services of professional surveyors, cartographers and geographic 
information system specialists. Particularly difficult is the determination of what 
actually is, or is not, included in the forest population. For example, management 
requirements might specify that logging should not be carried out within a certain 
distance of streams, to avoid siltation, or on slopes above a certain steepness. 
Inventory of timber availability would need to exclude those areas and they would 
have to be mapped out of the forest area accordingly. In a forest plantation, the trees 
may not have grown at all on swampy areas, or refuge areas of native forest for 
wildlife may have been left scattered throughout the plantation. Again, these need 
to be mapped or, if they are not, must be included in the sampling process and wood 
availability from them recorded as zero when they are encountered as part of the 
sample actually taken.
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There is a variety of more and less sophisticated surveying equipment available 
these days. It can range from a simple magnetic compass, clinometer and tape, to a 
theodolite and laser distance measuring equipment or to the global positioning sys-
tem. The precision of the survey would be expected to increase as more sophisticated 
equipment is used. Nevertheless, the principles of the conduct of a survey remain the 
same, no matter what equipment is used; these are outlined in Chap. 12.

After the survey has been completed, the ready availability today of geographic 
information systems has made much easier the process of producing finished maps 
of complex forest areas. These systems are used universally today by organisations 
routinely involved with forest inventory. Description of their use is outside the 
scope of this book.

11.4 Sampling Units and Calculation of Results

Once issues of population boundaries, the population area and sampling and plot 
measurement methods have been decided, a crucial problem is then to consider the 
size of the population. That is, it is necessary to consider the value of N, the total 
number of sampling units in the population, a variable which appears in various 
places in Chap. 10 in the equations used to calculate the results of the inventory for 
various sampling methods.

If plot measurement is being used, N would be the total number of plots which 
could be positioned across the entire forest area. That is, N would be equal to the 
forest area divided by the plot area. Those N plots would then constitute the sam-
pling units of the population from which the sample would be drawn.

If point sampling is being used, there is a quandary. Over any area, there is an 
infinite number of points which could be chosen as the point sample points. No area 
can be ascribed to a point sample (Sect. 8.4.3), so there is no opportunity to deter-
mine N in the same way as for plot measurement.

Fortunately, there is a way out of this quandary for point samples, a solution 
which can be applied just as well for plot measurements. It requires only that the 
number of sampling units in the population (N) be much larger than the size of the 
sample to be selected from the population (n); mathematically, this requirement is 
written as N >> n. If this is so, the values determined for the population mean and 
its variance, as calculated using the equations in Chaps. 9 and 10 for the various 
types of sampling, are virtually unaffected by the value which is used for N in the 
computations. This may seem rather surprising, given that N appears in many 
places in those equations. However, some algebraic manipulation of the various 
equations will convince you that it is so; I have not shown those manipulations here, 
but they require appreciation of the fact that, if N >> n, then (N−n)»N and n/N»0 
(the mathematical symbol » means ‘approximately equal to’).

In forest inventory, it is virtually always true that N >> n. Usually, a sample size 
of some hundreds will be drawn from a forest area which is so large that it contains 
many tens of thousands of locations from which the sample could be drawn. Given 
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the discussion in the last paragraph, this means it will not be important in forest 
inventory if the value of N is difficult or impossible to define. Virtually any large 
value can be used for it, as long as it is much larger than the sample size.

Having said that, it is common in preparing a forest inventory to position a 
square or rectangular grid over the entire forest population area. The grid need not 
actually be square or rectangular; any geometrically regular shape would do. 
However, square or rectangular grids are usually easiest to deal with in practice. In 
essence, the grid squares (or rectangles) will then constitute the sampling units 
which make up the population and from which the sample will be drawn; a plot or 
point sample could be measured somewhere within any grid square which has been 
chosen as part of the sample.

The decision about the area of each grid square or rectangle is left up to the 
person conducting the inventory. Let us suppose there are N¢ of them, which will be 
determined as the total area of the forest divided by the area of the grid squares. As 
discussed above, as long as N¢ >> n, N¢ will be a perfectly good value to use in place 
of N, wherever N appears in the formulae to determine the population mean and 
variance for the various types of sampling.

These considerations lead to some minor issues with the computations necessary 
to obtain the results for different types of sampling, as follow:

•	 For	simple	random	sampling	(Sect.	9.4), N does not enter the equations to deter-
mine the population mean and its variance (9.1)–(9.2), hence its value is not an 
issue

•	 For	sampling	with	probability	proportional	to	size	(PPS	sampling,	Sect.	10.2.2), 
it is essential to use N¢ for N in all the equations which apply to that form of 
sampling (10.1)–(10.3), (10.5)

•	 For	 sampling	 with	 probability	 proportional	 to	 prediction	 (3P	 sampling,	 Sect.	
10.2.3) any arbitrary, large value may be used for N in the relevant equations 
(10.1)–(10.3), (10.6) as long as the value is >> n. Note that West (2005) claimed 
it was essential to determine N for 3P sampling, but it is recognised now that this 
is not so

•	 For	stratified	random	sampling	(Sect.	10.3), the values of W(h) in (10.8)–(10.9) 
should be calculated as W(h) = A(h)/A, where A(h) is the ground area of the hth 

stratum and A is the total forest area
 = 1

 = ( )
¼

é ù
ê ú
ë û

å
h H

A A h . As well, it needs to be 

assumed that the total number of sampling units in any one stratum [N(h)] is 
much greater than the sample size selected from that stratum [n(h)]. For most 
practical forestry inventories, it will indeed be true that N(h) >> n(h), hence, f(h) 
= n(h)/N(h)»0 and so a value of zero may be used for f(h), for all h, in (10.9). 
With those modifications, N no longer appears in any of the relevant equations 
(10.7)–(10.9), hence its value is not an issue

•	 For	model-based	sampling,	(Sect.	10.4), it is essential to use N¢ for N in all the 
equations which apply to that form of sampling (10.11)–(10.12).

In forest inventory today, it is common to choose the size of the grid squares to 
match some requirement for determining covariate values for the forest within each 
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grid square; covariate values are necessary if sampling with probability propor-
tional to size or model-based sampling are being used (Sects. 10.2.2, 10.4). For 
example, the Landsat 7 satellite (Sect. 13.3) is used often today to provide covariate 
values in forest inventory. This satellite produces images which cover a 30 m × 30 m 
ground surface area, so it will provide covariate values for forest patches of that 
size. Thus, a 30 m × 30 m grid would be established across the forest area con-
cerned, to match the imagery and to give the value of N¢. In Chap. 13, there is more 
discussion of the use of satellite imagery (as well as other forms of imagery) for 
forestry purposes.

11.5 Systematic Sampling

Systematic sampling is a quite straightforward variation on the method of conduct-
ing an inventory as, described in Sects. 11.2 and 11.4. It is used often in America, 
where many foresters make their living assessing timber availability from privately 
owned tracts of forests; American foresters term this timber cruising, or simply 
cruising.

Just as discussed in Sect. 11.4, systematic sampling involves laying out grid 
squares over the forest area, but with a grid size such that the number of grid 
squares equals the sample size required. Each and every grid square is then sam-
pled. Because there is then no selection of which grid squares are to be included in 
the sample, it is a sampling technique appropriate only to simple random or strati-
fied random sampling. As long as the location of the origin of the coordinate system 
used to lay out the grid squares is chosen randomly, the requirements for simple 
random sampling will be met; that is, each and every point in the population would 
have had an equal chance of being included in the sample. Usually, the intersection 
points of the grid lines, which make up the grid squares, are taken as the actual 
sample points.

The advantage of systematic sampling is that it is very straightforward to apply 
in the field. The sampler simply starts at a randomly chosen point, somewhere near 
a corner of the forest tract, and then walks along straight lines directly through the 
forest, measuring a plot or taking a point sample at regular intervals, as determined 
by the chosen grid spacing.

Foresters who do this type of work regularly will know from experience what an 
appropriate size is for the grid for the particular forest type within which they are 
working. The sample size will then be determined directly by the area of the forest. 
The forest area itself can be estimated by multiplying the sample size by the area of 
the grid squares, so avoiding the need for a separate survey to determine the  forest 
area. The sampler might also be able to identify stratum boundaries as he or she 
walks through the forest, thus effectively mapping the forest as he or she goes.

The main disadvantage of systematic sampling is that it is appropriate only for 
forest where simple or stratified random sampling is most appropriate.
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11.6 Stand Measurement

Stands are usually measured in forest inventory using plots or point samples. In 
doing so, a number of issues need to be borne in mind. Some of these are important 
for both plot measurement and for point sampling, and others only for one or the 
other.

11.6.1 Shape

Plots are usually square, rectangular or circular. In principle, there seems no reason 
in forestry to prefer one shape over the other.

There are difficulties involved with all shapes. Circular plots may be easier to 
establish, since their circumference can be readily identified by running a string 
from the centre out to the required radius. However, it is more difficult to decide 
which trees are inside or outside the plot, because the boundary is curved. Square 
and rectangular plots can be more time consuming to lay out, because they have to 
be established carefully with right angles at the corners. Their boundary length is 
also greater than that of a circular plot of the same area, so more decisions have to 
be made as to which trees are actually in or out of the plot; on the other hand, their 
straight edges can make these decisions easier. As mentioned in Sect. 8.4.3, it is 
usually assumed that a tree is in the plot if the centre of its stem lies within the plot 
boundary.

Point sampling inherently involves measuring trees from circular areas (Fig. 8.1), 
but care needs to be taken when deciding if borderline trees should be included or 
excluded (Sect. 8.4.4).

11.6.2 Positioning

Whichever plot shape is preferred, additional care needs to be taken in plot posi-
tioning when the trees are positioned with some regular arrangement, such as in a 
plantation. Because of the regular spacing, it is possible to position plots of the 
same area, but which contain different numbers of trees. However, it is usually quite 
straightforward to find a consistent way of positioning plot corners or plot centre 
and choosing the plot area so that the stocking density of the trees in the plot is 
similar to that of the general stocking density of the plantation.

In plot or point sampling, care must be taken where forests have some regular 
trends in tree size imposed on them by physical characteristics of the land or man-
agement practices. For example, where logging debris has been heaped into long 
rows (often called windrows) and burnt, trees in the regenerated or replanted forest 
may grow better on the windrows because of the soil sterilisation and nutrient 

11.6 Stand Measurement 121

10.1007/_11
10.1007/_11
10.1007/_11


122 11 Conducting an Inventory

release resulting from the fire. If samples were taken at spacings consistent with 
windrow spacing, windrows might be sampled either with higher or lower fre-
quency than should be the case.

Trees often grow more poorly on ridges in the landscape, because water availa-
bility from the soil is often less on ridges than in the down-slope valleys. If grid 
lines for a systematic sample happened to be orientated so they were parallel to 
ridges, areas of poorer or better forest might be sampled more or less frequently 
than they should be.

Whatever these potential sources of bias in sampling, care needs to be taken to 
orient the sampling unit grid to avoid them. Sometimes long and narrow rectangular 
plots, oriented with their long axes perpendicular to the regularity, are used to mini-
mise these problems.

It is common also to come across treeless gaps in the forest. They are part of the 
forest population and must not be ignored. They can be mapped out of the popula-
tion or, if not, must be included in the sampling process and recorded as having a 
zero value of whatever is being measured in the inventory.

11.6.3 Size

Deciding what the area of plots should be presents several problems. In Sect. 10.5, 
the size of the sample to be taken in an inventory was considered, that is, the 
number of stands to be measured. However, ultimately it is the intensity of sam-
pling which is rather more important than just the number of sampling units. The 
intensity is defined as the total area sampled divided by the total forest area. It 
depends on the number of plots included in the sample, their areas and the total 
forest area. A certain intensity of sampling will be necessary to achieve any desired 
precision of the final estimates sought in the inventory.

It is cheaper generally to measure fewer, larger plots than many smaller plots; 
the time and cost involved in moving measuring crews from plot to plot is usually 
much greater than taking more measurements at any one plot. However, if the sam-
ple size (that is, the number of plots sampled) is too small, the sampling may not 
cover adequately the range of variation that occurs across the forest. Having said 
that, in forestry practice plot sizes are generally chosen to be within the range 
0.01–0.1 ha.

Because plot area is unknown with point sampling, sampling intensity cannot be 
determined. The smaller the basal area factor used for the point sample, the larger 
will be the number of trees measured around any point. Again, a balance will need 
to be drawn between the number of plots sampled and the number of trees meas-
ured in each.

If a lot of prior information is available about the forest to be inventoried, it may 
be possible to undertake computations to determine the optimum balance of plot 
size, sample size and sampling technique to achieve the most cost-efficient inven-
tory possible. These techniques are outside the scope of this book.

10.1007/_11


11.6.4 Edge Plots

In any sampling exercise, it is inevitable that some sample locations will be positioned 
close to the forest edge, so that a plot established at that point would extend partially 
outside the forested area or trees would be missing from a point sample, as the observer 
looks beyond the edge. Trees along the forest edge generally grow differently from 
those well within the forest, because they have fewer surrounding trees to compete with 
them; edge trees are often larger and have bigger branches growing out into the open 
space. Such trees should be included in the sampling, or else some bias in the final 
results would be expected. Thus, it would be quite inappropriate simply to move a plot 
or point sample position further inside the forest to avoid an edge overlap.

Two of the more common methods used to deal with the problem will be described 
here. The first is known as the mirage technique. For plots, the segment of the plot lying 
beyond the edge is mirrored along the edge back inside the forest. Trees falling within 
the mirrored section are measured again and included twice in the plot measurements. 
The plot retains its full area. For point samples, the position of the point is mirrored from 
the edge into the open space beyond the edge and the point sample made from there as 
well as from the original point, so also measuring some trees twice. Intuitively, it may 
seem that measuring the same trees twice is likely to introduce bias into the results, but 
formal statistical analysis of the mirage technique has shown that this is not so (Gregoire 
1982). The mirage technique becomes rather difficult to apply if the forest boundary is 
curved or cuts obliquely across the plot, or if the plot overlaps a boundary corner.

A second method is known as the walk through technique. For any tree being 
considered, the observer walks from the plot centre or sample point towards the tree 
and then continues the same distance beyond the tree in the same direction. If the 
observer is then positioned outside the forest boundary, the tree is measured twice. 
This method is rather more convenient than the mirage technique where the forest 
edge is curved or oblique.

There are various other methods which have been devised to deal with this prob-
lem (Kangas 2006b).

11.7 Measurement Errors

In all the discussion on inventory to here, it has been assumed that the variable of 
interest being measured in the sample plots can be measured directly and so is 
unbiased and extremely precise for each and every tree measured.

For many measurements required in inventory, such as tree stem volume, this is 
rarely so. It is possible to climb standing trees and measure under bark stem diameters 
at frequent intervals to provide a virtually direct measurement of stem volume. 
However, so time consuming and dangerous are such measurements, they would almost 
never be countenanced. Instead, variables like tree diameter at breast and tree heights 
would be measured directly and a pre-existing tree volume or taper function (Chap. 6) 
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would be used to determine tree volume. Being derived using regression analysis, tree 
volume functions introduce ‘error’ in the estimates of wood volume made with them. 
Here, the term error is being used in its mathematical statistics context; it does not mean 
a ‘mistake’, but means there is a lack of precision of the estimate. That is, the estimate of 
wood volume made with a volume or taper function has a variance associated with it.

In statistical terms, the variance of the estimate of the variable of interest ulti-
mately increases the estimate of variance of the population mean (V

M
), determined 

as discussed in Chaps. 9 and 10 for various sampling methods. This will increase 
the size of the confidence intervals determined for population estimates. It is 
beyond the scope of the present book to discuss the statistical methods necessary 
to account for this. Whilst they have been used (e.g. Gertner 1990; Parresol 1999) 
sometimes, it may be possible to simply ignore the problem. The error associated 
with estimates made using a well constructed volume or taper function is usually 
small, so small that it is negligible in comparison to the size of the variation in the 
variable of interest between different sampling units in the population.

Whilst for many inventories it may be reasonable to ignore this problem, it is not 
uncommon to use a sampling technique known as two-phase sampling to deal with it. 
In the first phase, sampling is done and measurements are made, in each sampling unit, 
of easily measured covariate variables, such as tree diameter and height. In the second 
phase, a small sub-sample of the first phase samples are measured in detail to obtain 
values directly for variable of interest (say, by felling trees and measuring their stem 
wood volumes directly). The second phase sub-sample is used to establish a regression 
relationship between the variable of interest and the covariate variables. This relation-
ship is then used to predict the variable of interest on the first phase sampling units. In 
effect, this involves the development of a tree volume function specifically for the 
population being sampled. The statistical theory appropriate to this type of sampling 
is well established and can be found in more advanced texts on forest inventory. 

11.8 More Advanced Inventory

Chapters 9–11 have provided only a basic introduction to the way in which forest 
inventory is carried out today. Vastly more sophisticated sampling techniques and 
methods of conducting the inventory are used from time to time in different forest 
types in different parts of the world and to assess different forest characteristics.

These techniques may involve several stages of sampling. Perhaps satellite 
images might be used to obtain some information from a sample of the forest. Air 
photos, being of a smaller scale, might be able to provide more detailed measure-
ments on a smaller sub-sample. A still smaller ground sample might then produce 
highly detailed measurements of the variable of interest ultimately to be determined 
for the forest. The earlier stages may have then provided covariate values which 
may be related to the variable of interest. The larger and more complex the forest 
concerned, the more it will be necessary to adopt these advanced techniques.

However, for relatively simple forests, for areas which are not very large and for 
variables of interest which are not too difficult to measure, the techniques discussed 
in this book should be adequate for many inventory purposes.
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Chapter 12
The Plane Survey

12.1 Mapping

For most forest inventories, the area of the forest must be determined (Sect. 11.2). 
Generally, this involves surveying the forest boundary, drawing a map from the 
survey and determining the forest area from the map.

Mapping is generally the realm of the professional surveyor and cartographer. 
Much more information may be included on maps than just the boundaries of areas 
of interest. However, anyone working in the forestry needs to understand the prin-
ciples at least of how a survey of a forest area is done, how a map of its boundaries 
is drawn from it and how the area of the forest is calculated.

Highly sophisticated instruments, including precision theodolites, laser distance 
measuring equipment and global positioning system receivers are the tools of trade 
necessary to conduct more rigorous surveys. The global positioning system has 
become a generally useful tool for many purposes in forestry and is discussed in 
Sect. 12.6. Computer-based geographic information systems are readily available 
to draw the maps from surveys and calculate the areas of mapped regions; they are 
used by most forestry organisations today. However, using even simple instruments, 
a good-quality magnetic compass, a clinometer and a measuring tape, any forester 
should be able to conduct a reasonable survey of a forest area and draw a useful, 
basic map of it.

The main theme of this chapter is to establish the principles of a plane survey of 
a modestly sized parcel of land. It is termed a plane survey, because the objective 
will be to draw a map of the boundaries of the surveyed area on a flat piece of paper, 
that is, on a plane. This means, that wherever the land is sloping, the distances 
measured along the slopes will all have to be reduced to a horizontal distance; this 
is the way most maps are presented. Where it is wished to show the topography of 
the land on a plane map, it is usually presented as contour lines, each contour con-
necting points on the map which are at the same altitude. However, we will not 
consider here how contour maps are drawn.

P.W. West, Tree and Forest Measurement, 2nd edition, 125
DOI: 10.1007/978-3-540-95966-3_12, © Springer-Verlag Berlin Heidelberg 2009
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12.2 Survey Example

Figure 12.1 shows a simple, plane map of a rather oddly shaped piece of land, which 
encloses an area of exactly 1.43 ha. This area will be used as an example, to illustrate 
how a plane survey of it could be carried out and what computations need to be done 
to convert the survey measurements to a map which looks like Fig. 12.1.

Figure 12.1 was drawn with X- and Y-axes which had their origin exactly at 
Point 1 and with the Y-axis running vertically along the line which joins Point 1 to 
Point 11. The exact X- and Y-coordinates of each of the 11 points around the bound-
ary are shown in the last two columns of Table 12.1. This chapter illustrates how 
the measurements taken in a survey of this area are converted to a set of X- and 
Y-coordinates so that a map of it could be drawn easily.

12.3 Conducting the Survey

In principle, a plane survey is carried out by starting at any arbitrarily chosen corner 
point around the area to be surveyed. The surveyor then moves progressively from 
corner point to corner point around the survey area. The distance between each pair 
of corner points, the slope of the land between them and the angle by which the 
direction of travel changes at each point are measured. Usually at least two people 
are required to conduct a survey, both to move the equipment and take the required 
measurements.

The distances between points can be measured with a tape (many years ago a 
light chain, which could not stretch with repeated use, was used to measure dis-
tances and gave us the name of the old imperial unit ‘link’ for distance measure-
ment). For more precise distance measurements, laser measuring devices are 
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Fig. 12.1 Map of a section of land which is to be surveyed. The total distance around its perim-
eter is 752.5 m and the area enclosed is 1.43 ha
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available today and avoid the need to have to drag the tape along the ground 
between measurement points. Using a global positioning system receiver also 
avoids the need to use a tape.

For more precise surveys, a theodolite may be used to measure the angle of 
direction change at each point. In the example in Fig. 12.1, this would be done at, 
say, Point 2 as follows. The theodolite is mounted on its tripod immediately over 
Point 2. The surveyor looks back to Point 1 through the telescope of the theodolite 
and then rotates the instrument to view Point 3. The theodolite scale then gives the 
angle through which the instrument has been rotated and this is the angle of direc-
tion change required at Point 2. It will be assumed in this book that any such angles 
are measured clockwise from the line looking back to the preceding point; it does 
not matter if angles are measured anticlockwise, as long as the surveyor is consist-
ent throughout the survey.

Angles can be measured also with a compass. In this case, standing at Point 2, 
the surveyor measures the bearing from north to Point 3 to give the required direc-
tion change. Some theodolites have an inbuilt compass and can be used to measure 
these bearings. Good quality, hand-held compasses can also be used, but these 
would not be expected to be as precise as a theodolite. A global positioning system 
receiver can also be used to measure bearings. For many forestry purposes, where 
a highly precise map is not required, a hand-held compass serves adequately. When 
using a compass, the user must ensure that no metal objects, such as metal fence 
posts, are nearby because they may influence the compass reading.

Theodolites generally allow vertical as well as horizontal angle measurements. 
Thus, standing at Point 2, the surveyor measures the vertical angle up or down to 
Point 3. This gives the required slope angle to the next point. To ensure the measure-
ment is correct, the surveyor must sight to a point on a staff, mounted at Point 3, the 
same height above ground as that of the theodolite eyepiece. Hand-held clinometers 
can be used to obtain slope angles also. These are less precise than a theodolite, but 
serve adequately if a high degree of precision is not required of the survey.

If the slope angle changes appreciably (say, by more than 2−3°) along different 
parts of the line between any two points, the surveyor needs to establish new survey 
points where the slope changes; since the distance between points is measured as 
the distance along the slope (the tape is laid along the sloping ground), it is obvi-
ously important that the slope between any two measurement points should not vary 
greatly at any point between them. If there is a gully between two survey points, it 
is necessary to establish a new point at the bottom of the gully to deal with the dif-
ferent slopes on each side of it. Use of a global positioning receiver avoids the need 
to determine slope angles, because it provides information to allow automatic deter-
mination of the horizontal distance between survey points.

Table 12.1 lists the set of measurements that a survey team might make in con-
ducting a survey around the area in the example in Fig. 12.1. It was assumed in this 
case that a theodolite without a compass was used to measure the change of direc-
tion at each point, so the angle measured was taken by looking back to the preced-
ing point and turning the theodolite round to view the next point. The actual 
measurements taken are shown in bold face type in the table. All the other values 
shown were computed from them, as will be discussed in Sect. 12.4.



12.4 Calculating the Survey Results

At the start of the survey, an arbitrary decision needs to be made as to the coordinate 
system in which the final map is to be graphed. For convenience, the starting point of 
the survey (Point 1 in the example) is usually chosen to be the origin, that is, to have 
X- and Y-coordinate values of 0,0. It is convenient also to assume that the Y-axis runs 
along the line joining the first point to the last one (the line joining Points 1 and 11 in 
the example), with Y-coordinate values positive and increasing towards the last point. 
The X-axis is then perpendicular to the Y-axis through the origin.

Given these assumptions about the axes, it is possible to take the survey data, 
point by point in the order in which they were measured, and determine X- and 
Y-coordinate values for each survey point. The final map of the survey boundary 
can then be drawn on graph paper (or by using any of the myriad computer software 
packages now available to do this), using the calculated coordinate values.

For the ith survey point (i = 1…11 in the example), let the angle of the direction 
change at that point be a

i
 and the angle (clockwise from the positive direction of 

the Y-axis) that the line to the next survey point makes with the Y-axis be b
i
. Let the 

angle of the slope of the ground to the next point be g
i
 (it is positive for an up-slope 

and negative for a down-slope), the distance measured along the slope to the next 
point be s

i
, the corresponding horizontal distance be h

i
, and the X-and Y-coordinate 

values calculated for the point be x
i
 and y

i
. The measurements taken in the survey 

provide values for a
i
, g

i
 and s

i
 for each of the survey points. Values for all the other 

variables must be calculated from them.
The computations begin by considering the first survey point. Because of the 

way it was assumed the axes were positioned, with their origin at that point, values 
of the various variables for that point are determined automatically. So b

1
 = a

1
(=90° 

in the example) and x
1
 = y

1
 = 0. These values can be entered immediately in the 

results table and are shown in the first row, for Point 1, of Table 12.1. The horizon-
tal distance, corresponding to the slope distance, to the next point is calculated as

 h
i
 = s

i
 cos (γ

i
 ).  (12.1)

For the example, this gives  h
1
 = 61.5 cos (–8) = 61.5 ´ 0.99027 = 60.9 m, the result 

shown for Point 1 in Table 12.1.
The results for the remaining survey points are now considered in the order in 

which they were surveyed. For each, the horizontal distance to the next point is 
calculated using (12.1). The remaining results each depend on the results calculated 
for the preceding survey point. The angle that the line from the ith point to the next 
survey point [the (i + 1)th point] makes with the Y-axis, b

i
 (i = 2…11) in the exam-

ple), is calculated as

 b
i
 = b

i 
_

1
 + a

i
 – 180, (12.2)

where all angles are in degrees (if other angular units are being used, the 180° 
in 12.2 would have to be replaced by the corresponding value for whatever 
angular units are being used). The result from (12.2) is often negative 
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 (representing an angle measured anticlockwise from the Y-axis). It can be left in 
that form because the subsequent trigonometric calculations give the same 
answers whether the angle is positive or negative. If desired, however, a negative 
answer can be converted to the same angle, expressed as a positive angle meas-
ured clockwise from the Y-axis, simply by adding 360° to the result; this conver-
sion has been done wherever appropriate in calculating the results in Table 12.1. 
In the example, (12.2) gives b

2
 = 90 + 136 – 180 = 46,  which is the result shown 

in the second row, for survey Point 2, in the table.
The X- and Y-coordinates of the ith point are calculated as

 x
i
 = h

i - 1
 sin (b

i - 1
) + x

i - 1
 (12.3a)

and

 y
i
 = h

i - 1
 cos (b

i - 1 
) + y

i - 1
. (12.3b)

So, for the example  x
2
 = 60.9 ´ sin(90) + 0 = 60.9 ´ 1 + 0 = 60.9 m, and y

2
 = 60.9 

´ cos(90) + 0 = 60.9 ´ 0 + 0 = 0 m, which are the results shown in the second row, 
for survey Point 2, in the table.

These computations are repeated for all the remaining survey points and are 
shown in the table. In addition, the computations are repeated one last time, after 
completing the results for the last survey point, Point 11 in the example. This gives 
a new pair of coordinates for the original starting point, Point 1 in the example. The 
resulting X- and Y-coordinates, 7.6 and 5.6 m respectively, are shown in the last row 
of the table. They are not the same values, 0 and 0 m, which we know are the actual 
coordinates of Point 1, since it was chosen as the starting point. The difference is 
inevitable, because the survey can never be carried out perfectly. The angles and 
distances will never be measured exactly, because of limitations in the measuring 
devices and the limitations of the people making the measurements.

Figure 12.2 shows the final plotted survey, using the coordinate values calculated 
from the survey data. It can be compared with the original in Fig. 12.1. The deviation 
of the final calculated position of survey Point 1 from its original position is obvious.

The distance between the final, calculated position of the starting point and its 
known position is known as the closing error of the survey. The distance can be 
calculated using the general function used to calculate the length of the straight 
line, t, which joins any two points of which the X- and Y-coordinates are known, 
(x

a
, y

a
) and (x

b
, y

b
), where

 2 2( ) ( ) .= - + -a b a bt x x y y  (12.4)

For the example, 2 2(7.6 0) (5.6 0) 9.4 m.= - + - =t  That is to say, at the end of 
the example survey the calculated position of the starting point of the survey was 
9.4 m away from where it should have been, due to the errors made in taking the 
measurements.

In conducting the survey, a total horizontal distance of 737.2 m was travelled 
around the perimeter of the area being surveyed (the sum of the values h

i
 in Table 



12.1). That is to say, after travelling 737.2 m, we ended up 9.4 m away from where 
we should have been. So, in conducting the survey we were 1 m away from where 
we should have been for every 737.2/9.4 = 78.4 m travelled. This quantity, the 
traverse distance divided by the closing error distance, is known as the accuracy of 
the survey and is generally used by surveyors to judge the quality of their work.

An accuracy of 1 m in 78.4 m would be considered inadequate by most profes-
sional surveyors, who usually pride themselves on achieving much higher accura-
cies. However, it depends entirely on the purpose for which the survey is being 
done as to what accuracy is required. In the example, the missing 9.4 m of land 
represented by the closing error might lead to a bitter dispute between neighbours 
as to where the boundaries between their properties lay; for legal purposes, a sur-
veyor would have to be more accurate than that. In contrast, for a forester making 
a rapid assessment of the area of a plantation, it might be quite adequate.

In the example survey, it was assumed that a theodolite was being used and the 
angle of direction change at each survey point was measured. If a compass (or global 
positioning system receiver) was being used, the bearing from north of the next sur-
vey point would be measured instead. Under these circumstances, it would be 
assumed usually that the Y-axis of the coordinate grid would be directed to magnetic 
north, rather than along the line joining the first and the last survey points, as assumed 
in the example. The bearings from north would then be direct measures of the b

i
 in 

Table 12.1 and no values of the a
i
 would be recorded in the survey. In calculating the 

coordinates of the survey points, there would then be no need to use (12.2).

12.5 Area of a Surveyed Region

Once a survey is complete, it is often desired to calculate the area enclosed by the 
survey. A simple way to do this is to divide the area into triangular sub-sections, 
calculate the area of each triangle and sum them to give the total area. Figure 12.3 
shows the original example area (Fig. 12.1) divided into such a set of triangles.
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Fig. 12.2 Plotted result after conducting a survey of the parcel of land depicted in Fig. 12.1
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Calculation of the area of each of the triangles in the example proceeds as fol-
lows. Consider any arbitrary triangle, as in Fig. 12.4a, where the position of each 
corner is defined by a pair of X- and Y-coordinates. The lengths of its sides d

1
, d

2
 

and d
3
 can be determined from the coordinates of the ends of each side using 

(12.4).
For any triangle of which the lengths of three sides are known, the standard trigo-

nometric function known as the ‘cosine’ or ‘cos’ rule can be used to relate the 
lengths of those sides to the sizes of the angles of the triangles. So, in the example, 
if the angle opposite the side of length d

1
 is of size θ

1
, then the cos rule states that,

 
2 2 2

1 2 3 2 3 12 cos( ).-= +d d d d d θ  (12.5)
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Fig. 12.3 Map of the section of land shown in Fig. 12.1, divided into triangles for area  
determination
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Fig. 12.4 (a) Arbitrary triangle, with known coordinates of its corners, and (b) the triangle 
defined by Points 2, 10 and 9 of Fig. 12.3. In (b), the X- and Y-coordinates (m) of each corner of 
the triangle are shown in parentheses



This function can be rearranged and solved for θ
1
 as

 
1 2 2 2

1 1 2 3 2 3cos [( ) / ( 2 )].- -= - -d d d d dθ  (12.6)

The expression cos−1 in (12.6) represents the angle whose cosine is given by the 
expression in square parentheses [] following it; it is called the arccosine of an 
angle in trigonometry. All good scientific calculators and all computer systems 
have functions available to determine the arccosines of angles (and their arcsines or 
arctangents). The sizes of the other two angles in the triangle could be determined 
using (12.6), with appropriate rearrangement of the positions of d

1
, d

2
 and d

3
 in the 

function.
If the lengths of two sides of a triangle, say, d

2
 and d

3
 in the example, are known, 

together with the size of the angle included between them (θ
1
 in the example), then 

the area of the triangle, A, can be determined by

 2 3 1sin( ) / 2.A d d θ=  (12.7)

Figure 12.4b shows the triangular area delimited by Points 2, 9 and 10 in Fig. 12.3, 
together with the X- and Y-coordinates of each corner of the triangle. Figure 12.4b 
has been arranged to have exactly the same form as the triangle shown in Fig. 12.4a. 
Applying (12.4)−(12.7) to the dimensions of that triangle gives d

1
 = 42.4 m, d

2
 = 

70.7 m, d
3
 = 82.5 m, θ

1
 = 31.0° and A = 1,500 m2.

If similar calculations are done for all the triangles in Fig. 12.3 and their areas 
summed, the total area can be calculated as 14,300 m2, that is, 1.43 ha.

12.6 Global Positioning System

The global positioning system (abbreviated as GPS) allows users to determine 
where they are on earth (their latitude, longitude and altitude). Use of the system 
requires a portable electronic receiving device, which can be hand-held or is easily 
mountable in a vehicle, boat or aircraft. The system is obviously useful as a navi-
gational aid on land, sea or in the air, but can be used also as a surveying tool. The 
system is owned and controlled by the United States government, but is available 
for use by anyone who buys a suitable receiver.

The system works through 24 satellites which are positioned in earth orbit. 
Somewhere between five and eight of them are usually above the horizon at any 
time, as ‘viewed’ from any point on earth. Ground stations around the world, con-
trolled by the system owners, track the satellites moment by moment so their posi-
tions are always known. The satellites constantly transmit radio signals about their 
position. These are received by the user’s portable GPS receiver. As long as signals 
from at least three satellites are being received, the GPS receiver can calculate its 
position (and, hence, that of the user) on earth as latitude and longitude. If a fourth 
satellite is also in ‘view’ of the receiver, altitude above sea-level can be determined 
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also. When more than four satellites are in ‘view’, GPS receivers combine the 
information from all of them to provide more precise fixes of position.

A GPS position estimate is accurate to about 20 m horizontally and 28 m verti-
cally. This is more than adequate for general navigation purposes, but deviations as 
large as 20 m horizontally would obviously be inadequate for the example survey 
described in this chapter. However, GPS precision can be improved greatly by using 
what are known as differential global positioning system techniques (often abbrevi-
ated as DGPS techniques). These require much more sophisticated GPS receivers 
placed at precisely known reference locations on earth. These reference receivers 
can rationalise the satellite information to make it consistent with the precisely 
known position of the receiver.

Communities and organisations around the world own reference receivers and 
transmit radio information locally about corrections necessary to the satellite infor-
mation or make the information available on the internet. Some portable GPS 
receivers can receive this radio information directly from a reference station and 
use it to correct the satellite information it is receiving This can improve the accu-
racy of position estimates to about ±1−5 m. With less sophisticated receivers, the 
corrections must be made after returning from the field, using the published infor-
mation. With very expensive field GPS receivers, millimetre accuracy can be 
obtained, accuracy quite adequate for sophisticated plane survey.

Use of the GPS system is becoming ubiquitous in forestry. At the very least, it 
allows easy navigation through the forest, which would aid sample point location 
in an inventory. It is also being used extensively for forest mapping purposes; in 
conjunction with remote sensing of forests (Chap. 13), accurate maps displaying 
many forest attributes can be drawn without the need for ground surveys to be car-
ried out. The GPS system is also an important safety tool to help people avoid 
becoming lost and to aid in crises such as fire-fighting or searches. Forest canopies 
can interfere with the radio signals on which the system relies, although usually this 
simply increases the time it takes the GPS receiver to receive sufficient information 
to make its estimate of position.
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Chapter 13
Remote Sensing

The main emphasis of this book has been on the direct measurement of trees by 
people working on the ground, often using relatively unsophisticated equipment. 
However, there has been an increasing trend to exploit the more sophisticated 
devices now available, such as satellites, to measure trees and forests remotely. This 
means there is no need for people to handle the measuring equipment or, perhaps, 
to even visit the forest site where measurements are to be made.

Use of these devices has been limited in the past, perhaps because they could not 
measure fully the sizes of individual trees. But so rapid has been technological 
development that this limitation is now starting to be overcome. Over the next few 
decades it is conceivable that much of the relatively labour intensive measurement 
of individual trees on the ground will be superseded by the use of sophisticated 
electronic equipment, which measures trees remotely.

This final chapter summarises the principles and capabilities of the main types 
of remote sensing instruments available currently. Different instruments are capable 
of operating at different scales, from the single tree right through to large forest areas. 
Some operate from the ground, some are carried aloft in aircraft, whilst satellites 
operate from space. In this chapter, they will be discussed in that order.

13.1 Ground Measurement

Measurement of tree stems and the amount of wood they contain has been the 
principal focus of this book. One of the principal limitations of remote sensing 
instruments borne in aircraft or satellites (Sects. 13.2–13.3) is that the forest can-
opy obscures the stems (and branches) of the trees when viewed from above; this 
has been an important limitation to their use more generally in forest measurement. 
However, instruments which are positioned on the ground are now becoming 
available to allow remote measurement of the fine detail of individual trees.

P.W. West, Tree and Forest Measurement, 2nd edition, 135
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13.1.1 Tree Stems and Crowns Using Lasers

The newest, and still experimental, ground-based, remote sensing instruments use 
the reflection of laser light to construct a three-dimensional image of the trees in a 
stand. They operate to a distance of some tens of metres around a central point. 
From the information these instruments provide, it is possible to determine, in detail, 
the size of each tree stem as well as other above-ground parts of the tree.

The principles of laser light and its use to determine the position of a distant object 
were discussed in Sect. 2.2. In the context of remote sensing, laser measurement is 
often termed ‘lidar’, an acronym for LIght Detection And Ranging; this is analogous 
to the more commonly known ‘radar’, an acronym for RAdio Detection And 
Ranging, which uses radio, rather than light, waves.

The laser instruments being developed for ground measurement of trees emit 
pulses of laser light which shine a spot smaller than 10–15-mm in diameter on an 
object (the size of the spot increases the further the object is away). This means that 
the three-dimensional position of objects as small as leaves can be measured.

Hopkinson et al. (2004) tested one of these instruments by measuring the trees 
in 0.12-ha square plots in each of a mature red pine (Pinus resinosa) forest and 
a complex, uneven-aged, deciduous hardwood forest, dominated by sugar maple 
(Acer saccharum) in Ontario, Canada. Their instrument could emit 2,000 laser pulses 
per second; the light spots were spaced apart by as little as 10 mm as the instrument 
scanned the three-dimensional space around it. They took six views of each plot, 
from points positioned outside the plots, to ensure each tree in a plot could be ‘seen’ 
clearly by the instrument. It required about 6 hours to get these views.

Complex computer programs are required to deal with the enormous amounts of 
data obtained from such instruments; in Hopkinson et al’s case, they would have 
accumulated data for the positions of over 30 million separate points within their 
two plots. When such data are analysed by the computer, they can be presented as 
what appears as a high contrast black and white photograph, showing quite clearly 
the stem of each tree and its branches and leaves. Hopkinson et al. used the data to 
determine the diameter at breast height of each tree in their stands and its total height. 
They found that the instrument gave unbiased estimates of tree stem diameters, with 
an accuracy quite adequate for normal forest measurement purposes. However, tree 
heights were under-estimated, by about 1.5 m on average. Because the view of the 
tip of a tree is largely obscured by the intervening foliage, relatively few laser 
pulses reach the tip to be reflected back by twigs and foliage there; this ‘shadowing’ 
of the tip led to the bias in estimates of tree heights.

Henning and Radtke (2006) tested a similar instrument in a 20-year-old 
plantation of loblolly pine (P. taeda) in Virginia, USA. They were able to measure 
successfully how the diameter changed along individual tree stems to a height well 
within the tree crown. They were also able to determine the position of branches in the 
lower part of the crown. However, a small degree of bias was evident in their results.

Danson et al. (2007) used both a laser instrument and a camera to take the same 
view, from below, of the canopy of a pine forest in Switzerland. Both images are 
shown in Fig. 13.1, where it is obvious how closely the laser image resembles a 

10.1007/_13


13.1 Ground Measurement 137

photographic image. In their case, Danson et al. were aiming to use the laser data to 
determine leaf area index of the forest (which can be done also from the photographic 
image – Sect. 13.1.2). Lovell et al. (2003) tested the ability of a similar laser instrument 
to measure variations in leaf area index down through forest canopies.

Tanaka et al. (2003, 2004) tested a laser instrument which operated on a slightly 
different principle. Instead of emitting pulses of laser light, their instrument projected 
a continuous laser beam, which was moved progressively around the surrounding 
forest. Reflections from this beam were detected by a digital camera, positioned some 
distance from the laser instrument. Tanaka et al. were interested particularly in meas-
uring the leaf area index of the forest canopy (see also Sect. 13.1.2). To do so, it required 
leaves to be distinguished clearly from branches and the stem in the image obtained of 
the canopy. They found that they could do this by using laser light of two different wave-
lengths; leaves could be identified more clearly using infra-red light, whilst branches 
could be better identified when lit with visible red light. Figure 13.2 shows the clear 
distinction between leaves, branches and stems in an image obtained by Tanaka et al.

Fig. 13.1 A vertical view from below, through the canopy of a forest in Switzerland, dominated 
by mountain pine (P. mugo), but with some stone pine (P. cembra). Average height of the trees in the 
forest was about 12 m. The views are (a) as seen using a laser scanner and (b) as seen in a photograph 
taken with a camera with a wide-angle lens (from Fig. 2 of Danson et al. 2007, reproduced with 
kind permission of the Institute of Electrical and Electronics Engineers, © 2007 IEEE)
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These ground-based, laser measurement instruments are clearly showing 
 potential for detailed measurement of tree characteristics. However, they will need 
considerable research development before they become useful in practice for 
broad-scale forest inventories, where hundreds or even thousands of plots may need 
to be measured routinely. The instruments themselves will need to be of a size, 
weight and durability to allow easy transportation by hand through dense vegeta-
tion and over difficult terrain. They will also need to operate much more quickly 
than at present, perhaps allowing complete measurement of a stand in no more than 
~30–45 min. Considerable work is also required to develop computer programs 
capable of analysing the enormous amounts of raw data obtained from these instru-
ments to derive the required measurements of the individual trees. One further limi-
tation is that they can only determine stem measurements over bark; if under-bark 
measurements are required, assumptions will need to be made about bark thickness 
(c.f. Sect. 5.4).

Fig. 13.2 A view through the canopy of a mixed-species, hardwood forest, dominated by 
Japanese oak (Quercus serrata) trees, with an average height of 20 m, on the campus of Nagoya 
University, Japan. The image was derived from laser scanning of the canopy, using light of both 
infra-red and visible red wavelengths. The lighter elements in the image are leaves, whilst the 
greyer elements are tree stems and branches. The information used to produce this image can be 
used also to determine the sizes of the various objects in the view (reprinted from Fig. 11 of 
Tanaka et al. 2004, with permission from Elsevier)
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13.1.2 Leaf Area Index Using Sunlight

Leaf area index (Sect. 8.9.2) is an important stand parameter, useful to determine 
how much sunlight a stand absorbs and, hence, what the photosynthetic production 
of a stand might be.

Considerable effort has been made to develop methods to measure leaf area 
index from the ground, without having to fell trees. These have been reviewed by 
Fournier et al. (2003): discussion here will be restricted to the use of instruments 
which determine leaf area index by measuring the amount of sunlight which passes 
through the forest canopy to the ground below.

In essence, these instruments consider the straight beams of sunlight, coming 
from any point in the sky above, as ‘pointers’ which are being projected through 
the canopy. The path of any beam may be interrupted, by hitting a leaf so that it 
does not reach the ground below, or it may pass right through the canopy and reach 
a measuring instrument on the ground.

By measuring how many beams of light pass through the canopy, these instruments 
determine the canopy gap fraction (in essence, the proportion of the area of the sky 
above the canopy which is not hidden by any part of the canopy). If the canopy gap 
fraction is known, together with the angle from the horizontal at which the leaves 
in the forest hang, a well known law of physics (called the Beer–Lambert law) can 
then be used to calculate the leaf area index of the canopy. Unfortunately, this law 
requires that the leaves be randomly positioned within the canopy. This is generally 
not the case; leaves often occur in clumps on individual shoots and shoots are often 
clumped in different positions within the crown. Also, leaves are not opaque and a 
small amount of the light which hits them passes through them. In addition, some 
light beams are interrupted by tree stems or branches, rather than by leaves, and 
some light beams are scattered by reflection from several leaves. Various methods 
are used to allow for these complications in measuring leaf area index with these 
instruments (Fournier et al. 2003; Jonckheere et al. 2005a).

Perhaps the most reliable way to allow for these complications is to calibrate the 
instrument specifically for the type of forest in which it is to be used. This involves 
determining the actual leaf area index of the canopy of a particular forest type by 
felling trees and directly measuring the area of their leaves. These results are com-
pared with estimates made using the instrument and a leaf area index estimation 
function is then determined by relating the actual leaf area index to that estimated 
by the instrument.

Dovey and du Toit (2005) did this in young plantation stands of flooded gum 
(Eucalyptus grandis) in South Africa. They used the LAI-2000 plant canopy ana-
lyser instrument. This has a wide-angle lens (these are also called fish-eye or hemi-
spherical lenses, because they have an angle of view as wide as 180°) which directs 
sunlight passing through the canopy to one of five light detectors, depending on the 
angle above the horizon from which the light beam was directed. It detects light 
only in the ultra-violet to blue wavelengths. It is used on overcast days or at dawn 
or dusk, so sunlight is received from all angles of the sky, rather than being domi-
nated by light beams directly from the sun. Using readings obtained from the 
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instrument, Dovey and du Toit were able to develop a reliable leaf area index 
estimation function for their plantations. However, they found that the canopy 
characteristics of flooded gum plantations changed sufficiently, even between 
2- and 3-year-old plantations, that separate functions were required for both ages. 
This emphasises how important it is to undertake the calibration process for any 
particular forest type in which the instrument is to be used. Using the same instru-
ment, Battaglia et al. (1998) undertook a similar calibration task in 6–7-year-old 
plantations of shining gum (E. nitens), scattered in various locations across 
Tasmania, Australia. Despite the leaf area indices of the different plantations vary-
ing widely (over the range 0.5–7.5 m2/m2), they found that a single leaf area index 
estimation function could be used satisfactorily for all these plantations.

Another instrument of this type is known as the DEMON. It is carried along a 
transect below the forest canopy, whilst being pointed directly at the sun. It measures 
the change in light intensity received on the ground, from point to point along the 
transect. Lang et al. (1991) tested this instrument in a plantation forest of radiata 
pine (P. radiata) in Canberra, Australia and found a very close correlation between 
the leaf area index of the forest and the amount of light transmitted through the 
canopy and measured by the instrument. Lang and McMurtrie (1992) used the same 
instrument to measure the area of the leaves of individual trees, by moving the 
instrument around the ground area below a tree, on which the shadow of its crown 
was cast. This could be a useful method to measure individual tree crowns in open 
forests, where the trees are spaced widely apart; an instrument which measures 
light over a wide angle of view, such as the LAI-2000 plant canopy analyser, would 
be less suited for this purpose.

Both these methods of leaf area index estimation, that is using diffuse light from 
all angles of the sky and direct beams of light from the sun, were compared by 
Chason et al. (1991) and by Fassnacht et al. (1994). They were able to develop suitable 
calibrations for both pine and hardwood forests in the USA to allow satisfactory 
estimation of leaf area index with either method.

Another approach to measuring leaf area index from the ground is to take a 
photograph of the canopy, usually with a wide-angle lens, looking vertically 
upwards from the ground below (Fig. 13.1b). Indeed, wide-angle photography has 
been used for many decades to obtain information on canopy characteristics. 
Because they provide a visual record, photographs can be useful also in assessing 
other things, such as damage to the canopy by insects, storms or disease.

In the past, analysis of photographs was often done by the eye and could be very 
time consuming. For example, Koike (1985) determined the canopy gap fraction in 
his photographs by superimposing a fine, dotted grid over them and counting the 
number of points where sky or leaves appeared on each photograph. More recently, 
digitising (that is conversion to a digital form) photographs taken on film (Chan 
et al. 1986; Rhoads et al. 2004) and the advent of digital cameras, which provide 
photographs immediately in digital form, allow more rapid and thorough computer 
analysis of photographs. Careful selection of the sky conditions, camera settings 
and even the wavelengths of light detected by the camera is essential to obtain suit-
able contrast in the photograph between the sky and canopy elements; only then can 
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the computer determine readily variables such as canopy gap fraction (Fournier  
et al. 2003; Jonckheere et al. 2005a, b, c; Zhang et al. 2005; Cescatti 2007; 
Chapman 2007).

Considerable research has been undertaken recently on the use of digital photography 
to measure leaf area index and other canopy variables. For example, Macfarlane 
et al. (2007b) found that digital photography, with or without a wide-angle lens, or 
the LAI-2000 plant canopy analyser all gave very satisfactory estimates of leaf area 
index in plantation stands of jarrah (E. marginata) in Western Australia. Keane 
et al. (2005) compared wide-angle digital photography, the LAI-2000 plant canopy 
analyser and several other instruments, which have not been mentioned otherwise 
here, to estimate the canopy bulk density (biomass of foliage and twigs, which will 
burn readily in a forest fire, per unit volume of the canopy) of coniferous forests 
in western USA. Both the LAI-2000 and wide-angle photography were found 
satisfactory for this.

There are many other examples of the use of wide-angle photography and other 
methods to measure leaf area index from the ground (Coops et al. 2004a; Jonckheere 
et al. 2004; Weiss et al. 2004; Arias et al. 2007; Macfarlane et al. 2007a; Montes 
et al. 2007, 2008; Schleppi et al. 2007; Wilson and Meyers 2007; Davi et al. 2008; 
Demarez et al. 2008; Dutilleul et al. 2008; Parveaud et al. 2008).

13.1.3 Roots

Perhaps the measurement of roots is the last frontier of remote sensing of forest 
characteristics from the ground. The excavation of roots, to measure directly their 
biomass, length or distribution down the soil profile, is an extremely labour intensive 
and difficult task (Sect. 7.2.3). The development of techniques and instruments to 
measure roots, without the need for excavation, is obviously highly desirable.

One technique which shows some promise is the use of ground penetrating 
radar. This technique is used commonly by people such as engineers, to locate pipes 
or cables which have been laid underground, or by archaeologists to locate historical 
artefacts which have been buried for centuries or even millenia. It involves trans-
mitting radio signals down through the soil and recording the times for reflections 
to be received back from objects within the soil. The higher the energy of the radio 
waves used (that is, the higher their frequency), the deeper within the soil can they 
penetrate, perhaps to a maximum of about 10 m.

There are a number of difficulties with using radar in soil, difficulties which do 
not exist with the use of radar through the air. The speed of travel of radio waves in 
air is the same as the speed of light, but soil slows that speed considerably, perhaps 
by more than one half. The speed is affected particularly by the temperature and 
amount of water in the soil (Butnor et al. 2003). This means that a ground penetrating 
radar instrument must be calibrated, before it is used on any day, to determine the 
speed of travel of radio waves in a particular soil. Also, soils contain many 
irregularities, such as rocks scattered throughout it or it may have various layers, 
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each with rather different properties. These irregularities can lead to unwanted 
‘background’ reflections of radio waves. These have to be removed from the data 
collected by the instrument, using complex computer programs, to leave only 
reflections from the objects it is desired to identify.

One of the few examples of the use of ground penetrating radar to measure root 
systems in forests comes from Butnor et al. (2003). They attempted to estimate the 
biomass of the root system, to a depth of 30 cm below the ground, in a 34-year-old 
experimental plantation of loblolly pine (P. taeda) in Georgia, USA. Butnor et al. 
tested their system in different parts of the experiment, where the growth of the 
trees, hence their root biomasses, had been affected substantially by the experimental 
treatments. Figure 13.3 shows images they derived from their data, after computer 
manipulation to remove background reflections. It shows the distribution of roots 
down through the soil profile along transects in two plots of the experiment. In this 
case, fertilisation had led to a substantial increase in root biomass.

Butnor et al. identified a number of limitations of their technique. They were 
able to identify roots only with diameters greater than about 5 mm. This would 
exclude fine roots. Whilst fine roots usually make up only a small proportion of 
the total biomass of the root system (Sect. 7.4.4), they are a very important part 
of the physiological processes of a tree. Clearly, ground penetrating radar does 
not yet have sufficient resolution to measure these very small roots. Butnor et al. 
also found that they could not measure tap roots, that is, woody roots which grow 
more or less vertically immediately below the tree, often to considerable depth. 
They suggested that these roots might be ‘seen’ with the ground penetrating radar 
if the instrument was oriented obliquely, rather than horizontally to the ground. 
They also found that the ground surface over which the instrument was used had 

Fig. 13.3 Images, derived from a ground penetrating radar, of the distribution of roots, to a depth 
of 30 cm, in the soil below a 34-year-old experimental plantation of loblolly pine (P. taeda) in 
Georgia, USA. Results are shown for (a) an unfertilised and (b) a fertilised plot in the experiment. 
Each image represents readings taken along a 2.4-m long transect, which straddled a row of trees. 
The grey markings are the reflections from the roots of the radar signal; their relative darkness can 
be used to estimate the biomass of the roots at any point. The root biomass in the fertilised plot 
was obviously much greater than in the unfertilised. There also tends to be a greater biomass of 
roots near the base of a tree, which is positioned in the tree row, at the centre of each image 
(derived from row C of Fig. 2 of Butnor et al. 2003 and reproduced with the kind permission of 
the Soil Science Society of America)
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to be quite smooth and free of debris; this would pose a problem to the use of the 
instrument in native forests where understorey plants and various sorts of ground 
debris are common.

Hruska et al. (1999) also tested ground penetrating radar in a small area of a 
50-year-old sessile oak (Quercus petraea) forest in the Czech Republic. They 
were unable to identify roots with diameters less than about 30–40 mm, hence 
were unable also to identify fine roots. However, they could construct, very 
satisfactorily, a three-dimensional image of how individual roots were distributed 
around a tree down to the bottom of its root system, which was about 2 m below 
the ground.

It is clear from this work that ground penetrating radar has some potential, at 
least to measure woody root systems in forests. However, at present it cannot meas-
ure fine roots. Research in this field seems rather limited at present; clearly much 
more will have to be done before ground penetrating radar becomes useful gener-
ally for measurement of roots in forests. Measurement of the magnetisation proper-
ties of soil has been used to identify certain soil types in plant ecological studies 
(Wang et al. 2008a).

13.2 Airborne Measurement

Because of the costs involved in employing measurement crews, measurement of 
forests from the ground can be expected only to provide information about a limited 
number of individual stands within the forest. If broad-scale measurements are to 
be undertaken over hundreds or thousands of hectares of forests, it is practical to 
do so only using instruments carried aloft in aircraft or satellites. These can provide 
information useful for various purposes, including identifying and mapping different 
forest types, assessing their site productive capacity (Sect. 8.8), stratifying the forest 
or providing covariate variables for inventory (Sects. 10.2–10.3).

As mentioned at the start of Sect. 13.1, a principal limitation to forest measurements 
taken from aircraft or satellites is that the forest canopy conceals the tree stems. 
This prevents direct measurement of the stem sizes and, hence, the wood volumes 
they contain. Perhaps an exception to this is the possibility of measuring deciduous 
forests during winter, when they have lost their leaves and their stems can be seen 
directly. An example of this used aerial photographs of pedunculate oak (Q. robur) 
forest in Denmark (Tarp-Johansen 2002a, b). However, the limited number of forest 
types to which this applies means that little research effort has been spent on mak-
ing full use of this type of imagery.

This section is concerned with the measurement of forests using instruments 
carried in aircraft. Most commonly, fixed-wing aircraft are used, although heli-
copters and even very small, remotely controlled aircraft have also been used. 
Different aircraft vary considerably in the speeds and altitudes at which they may 
fly, determining ultimately the ground area they cover in any given time and the 
degree of resolution of the images of the forest which they produce.

10.1007/_13
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13.2.1 Aerial Photography

Photographs taken from the air have been used extensively for forest management 
purposes for many years. Not only can aerial photographs provide measurements 
of some tree and stand characteristics, but they can be used also for general 
mapping and for vegetation studies, perhaps identifying where different vegetation 
types occur across the landscape or where insect attack or disease has damaged 
the forest.

Of recent times, it has been felt that the revolution in various forms of digital 
measurement (such as laser scanning–Sect. 13.2.2) may lead to the demise of aerial 
photography as an important tool in forest measurement (Hall 2003). Digitally 
measured data are particularly amenable to computer analysis and it was felt that 
this might avoid the need for, and subjective assessments of, the people who have 
viewed and interpreted aerial photographs in the past. However, the advent of digital 
cameras and the ability to transform photographs taken on film to digital form, 
using scanners, have largely removed this objection. Also, technological developments 
continue in both cameras and film, which provide ever increasing quality and variety 
of photographic images (Hall 2003). As well, there is information captured on pho-
tographs which the human eye is able to assess better than is possible presently with 
computers; hence, there remains a role for air photo interpreters. For all these reasons, 
aerial photographs are continuing to have a major role in mapping forests and in 
forest measurement.

All of black and white, infra-red and colour films are used for different pur-
poses in aerial photography; digital cameras also can take photographs using 
 different parts of the light spectrum. Within these film types, there are many subtle 
variations, which react in different ways to light of varying wavelengths; the user 
may select film and camera types to suit particular needs (Hall 2003). For example, 
infra-red photographs have been found to allow better distinction between crowns 
of hardwood and conifer trees in mixed forests in the northern hemisphere or to 
identify forests which are suffering ill-health from disease (Myers et al. 1984; 
Avery and Burkhart 2002). The different colours of crowns of different species can 
aid their identification in colour photographs, even in very complex forests, such as 
tropical rainforest (Myers and Benson 1981).

The scale at which photographs are taken determines the resolution with which 
things can be seen on the ground. Both the focal length of the camera used and the 
altitude at which the aircraft flies determine the scale. Small-scale photographs 
(1:30,000–1:100,000, that is, a distance of 1 cm on the photograph represents 
300–1,000 m on the ground) are suitable to recognise broadly different types of 
vegetation. Major types of forest cover and the species present in single-species 
stands can be identified from medium-scale photographs (1:10,000–1:30,000), 
whilst individual trees can be seen on large-scale photographs (1:2,500–1:10,000) 
(Avery and Burkhart 2002). Viewing the vegetation and the topography of the land 
on which it occurs can often be aided considerably by using pairs of photographs, 
which overlap partially in their view of the ground; the photo interpreter can then 
obtain a three-dimensional image by viewing a photo pair with a stereoscope.
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To map forests adequately from aerial photographs requires considerable skill 
and experience by photo interpreters. They need to have knowledge of the tree spe-
cies and forest types which occur in the region of interest, as well as the ecological 
relationships within the forests and with the environmental circumstances of the 
region. These give the interpreter clues as to what can be expected to appear on 
photographs. Such clues, together with characteristics such as the size, shape, col-
our and texture of tree crowns, will all help the interpreter map different forest 
types, or forest areas affected by disease or damaged by insect attack and so on; at 
present, the human eye is far superior at doing this than the computer. Such maps 
often form the basis for conducting forest inventories over large, complex forest 
areas (Sect. 11.2).

Two examples will illustrate some uses of aerial photography. The first is from 
Massada et al. (2006) and concerns estimation of the above-ground biomasses of 
individual trees in 40-year-old plantations of Aleppo pine (P. halepensis) in Israel. 
Massada et al. had available medium-scale (1:13,000) aerial photographs of the 
plantations. Because trees had been removed regularly from the plantations by thin-
ning, the trees were well spaced, so that their crowns could be clearly identified in 
the photographs. Photo interpreters were able to determine the height of individual 
trees by using stereo pairs of photographs and special equipment which allowed 
measurement of the three-dimensional coordinates of the tip of each tree and the 
ground below. The diameter of the crown of each tree was also measured. Massada 
et al. did this for each tree in a set of plots, trees which were also measured from 
the ground. They found negligible differences between the ground measurements and 
the measurements obtained from the aerial photographs.

When ground measurements are taken, it is commonly the tree diameter at breast 
height and tree height which are measured. Provided a biomass estimation function 
is then available for the species concerned (a function such as 7.1), individual tree 
biomasses can then be determined. However, because the forest canopy hides the 
tree stems, it is not possible to measure stem diameters from aerial photographs. 
Massada et al. dealt with this problem by developing a new biomass function for 
their species, from ground measurements of biomasses, crown diameters and 
heights of a set of sample trees. The function they developed was

 1.48 1.67
A 0.25  9B C H=  (13.1)

where B
A
 was the above-ground oven-dry biomass (kg), C was the crown diameter 

(m) and H was the tree height (m). It can be argued that larger trees will tend to have 
wider crowns and so tree crown diameter should be correlated quite highly with stem 
diameter. Thus, (13.1) can be considered as an allometric biomass estimation func-
tion, where crown diameter replaces stem diameter at breast height and which also 
includes tree height (c.f. Sect. 7.3). This function could now be used by Massada et 
al. to estimate biomasses of individual trees from the tree measurements they were 
able to take from their aerial photographs. Methods such as this are used commonly 
with various methods of remote sensing in forests. Where the remote sensing method 
is unable to provide some measurement, which would be taken normally from the 
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ground, a method is developed to provide the result desired ultimately, based on those 
measurements which the remote sensing is able to provide.

The second example is from Harcombe et al. (2004) and concerns a problem in 
the native forests of mixed Sitka spruce (Picea sitchensis) and western hemlock 
(Tsuga heterophylla), in the mountainous coastal ranges of Oregon, in north-western 
USA. This region is subject to intense wind storms, which blow in from the sea 
 during winter and may be sufficiently strong to blow down patches of forest.

Harcombe et al. had available six sets of medium-scale, aerial photographs, 
which covered some 500 ha of the region and which had been taken in various 
years between 1953 and 1993. Using stereo pairs of the photographs, photo inter-
preters were able to see and map patches of forest, as small as 0.5 ha in area, 
where tree stems were lying on the ground after being blown down by the wind. 
The difficulty of identifying such patches on a photograph is probably a good 
example where the human eye would be superior to the present capabilities of a 
computer.

In 1953, Harcombe et al. could identify only two small areas of blown down 
forest, with a total area somewhat less than 5 ha. However, over the next 40 years, 
additional blown down areas appeared and the existing areas expanded progres-
sively and coalesced. By 1993, all these areas formed a single, large patch of nearly 
50 ha of blown down forest. Harcombe et al. were able to correlate the location of 
this patch with the condition of the forest and the topography and wind intensities 
of the region. They concluded that the risk of forest blow down was greatest 
when the forest was at least 100-years-old, by which time the trees had grown to an 
average height of about 50 m, and where the forest was growing on particularly 
exposed, southerly facing slopes of secondary ridges, to the west of the main north–
south ridge of the mountains of the region. This information would be useful in 
making decisions about appropriate management and conservation practices for 
these forests.

The difficulty of the terrain in this region and the long time period involved in 
the development of the large blown down patch would have made it virtually 
impossible to have accumulated ground measurement information to give these 
results. It was only the availability of the long-term set of aerial photographs which 
allowed Harcombe et al. to do so. Other interesting examples of the use of long-term 
sets of aerial photographs can be found in Fensham and Fairfax (2002) and 
Fensham et al. (2002).

13.2.2 Laser Scanning

This form of remote sensing uses laser light, transmitted from an aircraft or a satel-
lite, some of which is reflected back when it strikes a solid object on the ground 
below. This is another application of lidar (Sect. 13.1.1).

Usually, for this form of remote sensing, a laser is used which emits light in 
pulses only some nanoseconds long (a nanosecond is one thousand millionth of a 
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second) and which reaches the ground as a spot. The size of the spot and the distance 
along the ground of successive pulses varies with the speed over the ground and 
altitude of the aircraft or satellite and the quality of the laser equipment. At best, 
very fine-grained information may be obtained with spot sizes and intervals 
between spots of only a few centimetres.

When the object on the ground being viewed is not completely solid, such as is 
the case for the canopy of a forest, reflections are obtained from various light spots 
as they strike various solid objects (leaves, branches, understorey vegetation or the 
ground below) during their passage down through the canopy. The tiny time differences 
between these multiple reflections can be measured, so the heights of various 
objects within the canopy can be determined; differences in distances as small as 
0.1–0.3 m can be measured using this method. The first reflections received will be 
from the top of the canopy and the last will be from the ground below the canopy, 
so that the height of the trees in the forest can be determined. An example of the 
type of the image of the forest canopy which can be obtained is illustrated in Fig. 
13.4. St-Onge et al. (2003) and Lovell et al. (2005) have reviewed the issues sur-
rounding tree height estimation using aerial borne lidar.

With laser data collected at sufficiently fine resolution, say with a spot size of 
about 0.25 m and with spots located 0.5–1 m apart, the position, height and crown 
spread of individual trees in stands can be determined readily. Considerable 
research attention has been paid to the application of airborne laser scanning to 
attempt to use the data to estimate many other individual tree and stand character-
istics. As with aerial photographs, this often requires development of functions 
which relate those characteristics to the variables which are measured directly by 
the laser scanner. Examples of the use of aerial borne lidar, in various forest types 
around the world, are for the measurement of tree stem diameters, heights, stem 
volumes and crown structure, stand frequency distribution of diameters, wood volume, 
biomass, woody debris and overstorey and understorey structure and for broad-
scale forest inventory (Persson et al. 2002; Holmgren et al. 2003; Lovell et al. 2003; 

Fig. 13.4 A cross-sectional view of the canopy of a eucalypt forest in southeast Queensland, 
Australia, derived using laser scanning information from an aircraft flying at about 250 km/h at 
an altitude of about 1,200 m. The total distance across the image was about 500 m; the vertical 
and horizontal scales are the same. The solid line at the base of the image is the ground surface, 
which rises gently from right to left, then falls away quite sharply near the left hand end of the 
image. The dotted points represent the top of the vegetation canopy along the cross-section, measured 
in this case at about 1 m intervals; a contiguous set of 6–8 points in the upper reaches of the 
canopy might represent the crown of a single tree. The average height of the trees along this cross-
section was measured on the ground as 24 m (from MBAC Consulting 2003, © Commonwealth 
of Australia, reproduced with permission)
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Coops et al. 2004c, 2007; Maltamo et al. 2004, 2005, 2006a, b, c, 2007a, b; Næsset 
2004, 2007; Popescu and Wynne 2004; Popescu et al. 2004; Riaño et al. 2004; St-Onge 
et al. 2004; Gobakken and Næsset 2005, 2008; Hall et al. 2005; Roberts et al. 2005; 
Chasmer et al. 2006; Falkowski et al. 2006; Mehtätalo 2006; Tickle et al. 2006; 
Bollandsås and Næsset 2007; Hanssen and Solberg 2007; Magnusson et al. 2007; 
Peuhkurinen et al. 2007; Popescu 2007; Bollandsås et al. 2008; Breidenbach et al. 
2008; Briggs et al. 2008; Fujisaki et al. 2008; Heurich 2008; Hilker et al. 2008; Pascual 
et al. 2008; Pesonen et al. 2008).

13.2.3 Spectrometry

A spectrometer is an instrument which records the amount of light it receives at 
each of a very wide range of wavelengths across the radiation spectrum. Typically, 
it might record the light received from as many as 300 separate, narrow, wavelength 
bands in the visible or infra-red light regions. In this context, a spectrometer is 
similar to a camera, except that a camera produces an image which combines the 
light received at many wavelengths, whereas a spectrometer records separately the 
light received at each wavelength.

Spectrometers can be used on the ground, from the air or can be carried in satel-
lites. However, for forestry purposes, there are some good examples of their use 
when carried in aircraft. Just as with aerial photographs, the properties of the instru-
ment and the altitude at which the aircraft flies will determine the scale on the 
ground of the spectrometer recordings. At sufficiently a large scale, they can cer-
tainly record the radiation reflected from the crowns of individual trees on the 
ground below.

An example of the use of spectrometry concerns assessment of the health of both 
native eucalypt forest and plantations of radiata pine (P. radiata) in New South 
Wales, Australia (Coops et al. 2003a, b, 2004a). One common symptom of the ill-
health of trees is a change in the concentration of chlorophyll in their leaves; chlo-
rophyll is a green pigment contained in leaves and is a crucial part of their 
photosynthetic system. Because chlorophyll absorbs light in red wavelengths 
strongly, it would be expected that a tree with a low chlorophyll content in its 
leaves, which might then indicate its poor health, would not absorb red light as 
strongly; a spectrometer might then be used to identify trees which are absorbing 
relatively low amounts of red light.

Using an airborne spectrometer, Coops et al. (2003b) were able to identify trees 
in a native eucalypt forest, which had low chlorophyll contents as a result of damage 
to their crowns by leaf-eating insects. Coops et al. (2004b) found they could use the 
information from other wavelengths to identify directly individual trees which had 
damaged crowns. In the same forest area, Goodwin et al. (2005) found that they 
could use the spectral characteristics of individual tree crowns to discriminate 
non-eucalypt trees from eucalypts, but were unable to separate eucalypt species one 
from another. Similarly, Coops et al. (2003a) found that they could identify 
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individual trees, in a radiata pine plantation, of which the crowns had been damaged 
and discoloured by a disease known as Dothistroma needle blight, a fungal disease 
which causes leaves to be shed from trees.

Another form of airborne spectrometry measures the concentrations of three 
elements, potassium, thorium and uranium in the top 35–40 cm of the soil on the 
ground below. It does so by measuring the emission of g-rays (radiation of a rather 
short wavelength) emitted during radioactive decay of these elements. This can be 
used to infer various properties of the soil including its depth, texture and its degree 
of weathering. Wang et al. (2007b) used the information from such a spectrometer 
as a part of a system to predict the site productive capacity (Sect. 8.8) of pine plan-
tation forests across wide areas of Queensland, Australia.

13.3 Satellites

With their world-wide coverage at all times of the year, satellites offer one of the 
most comprehensive forms of remotely sensed information (often referred to as 
satellite imagery) from forests. Some satellites are passive, that is, they sense 
radiation reflected from the surface of the earth. Others are active, that is, they emit 
radio or laser radiation which is reflected from the surface below back to the 
satellite.

As an example, the Landsat satellite series is one used widely for forestry purposes. 
It is owned by the United States Geological Survey. There have been a number of 
satellites in this series, launched from time to time between 1972 and 1999. Between 
them, they provide over 35 years of data, offering the possibility of studying changes 
that have occurred over that time in the vegetation at any point on earth.

The most recent in the Landsat series, called Landsat 7, carries an instrument 
known as Enhanced Thematic Mapper Plus (referred to commonly as ETM+). This 
is a passive instrument, which detects light reflected from the earth at each of a 
variety of wavelengths in the visible and infra-red regions of the light spectrum, as 
well as providing black and white photographs. Different types of vegetation and 
objects on the land surface will reflect light in these various wavelengths differ-
ently; it is these differences which offer the opportunity to identify and measure 
differences in vegetation or other land characteristics, from point to point across the 
ground surface.

The resolution of the Landsat 7 visible and infra-red light images is 30 × 30 m 
of the ground surface; that is, the images are made up of square spots, referred to 
commonly as pixels, which represent the intensity of radiation received from areas 
of the ground of that size. The photographs have a resolution of 15 × 15 m. These 
resolutions are inadequate to identify or measure individual trees in a forest, but are 
certainly adequate to identify quite fine scale variation in vegetation across the 
landscape. Unfortunately, there are some technical problems with the images 
obtained from Landsat 7, but similar images are still available from Landsat 5 
(Landsat 6 was never launched).

10.1007/_13
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There are now a large number of satellites, both privately and government 
owned, which can provide information which might be useful for forest measure-
ment. They include, amongst many others, the Advanced Land Observing Satellite 
(ALOS, Japan), IKONOS (American), Indian Remote Sensing Satellite (IRS, 
Indian), National Oceanic and Atmospheric Administration-Advanced Very High 
Resolution Radiometer (NOAA-AVHRR, American), Quickbird (American) and 
Système Probatoire d’Observation de la Terra (SPOT, French). All these satellites 
produce images at each of several light wavelengths and, as their technology 
improves, at finer and finer resolution; some are attaining a resolution which allows 
individual tree crowns to be identified.

To use satellite images effectively requires specialists who can, with the aid of a 
computer, adjust the images to take account of various technical problems associ-
ated with them. The exact area of the surface of the earth which any image covers 
must be identified. Allowance must also be made for matters such as the angle of 
view of the image, the angle of the sun above the horizon at the time the image was 
taken and variations in the atmosphere.

Several examples will be used to illustrate the ways in which satellite images are 
being used presently. The first example concerns the monitoring of young Sitka 
spruce (P. sitchensis) plantations in Britain, to determine if they have developed 
adequately (Donoghue et al. 2004). The average height and stand basal area of a 
number of plots, located in 2–17-year-old Sitka spruce plantations, were measured 
on the ground. It was found that their average height correlated well with infra-red 
light intensity, as measured for the plots from a satellite, whilst stand basal area 
correlated reasonably well with light intensity measured in green wavelengths. The 
results were similar using data collected either by the Landsat 7 or SPOT satellites. 
It was concluded that the satellite information was sufficient to allow assessment 
of the viability or otherwise of individual plantations.

The second example is drawn from work in China (Jiang et al. 1999), where 
an attempt was made to assess the rate at which a wide variety of forest types, 
spread across the whole country, were accumulating and storing carbon through 
photosynthesis. Jiang et al. had available data on the annual rate of carbon accu-
mulation (a measure known as net primary production, often abbreviated as 
NPP) by over 30 different forest types, both coniferous and hardwood, measured 
on the ground in over 1,000 plots spread around the country. Many studies 
around the world have found that net primary production by vegetation is related 
to a measure which can be calculated from satellite data, a measure known as 
normalised difference vegetation index (abbreviated commonly as NDVI). It is 
calculated, from light intensities measured in satellite data from both red and 
infra-red wavelengths, as

 
r i r i( ) / ( ),N I I I I= - +  (13.2)

where N is the normalised difference vegetation index and I
r
 and I

i
 are the intensities of 

red and infra-red, respectively, light measured in the same pixel of a satellite image. 
Jiang et al. obtained their images from the NOAA–AVHRR satellite. For each 
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 forest type, they found that they could relate net primary production to normalised 
difference vegetation index using the function

 P [1 ln(1 )],N a bN= - -  (13.3)

where N
P
 was the net primary production, a and b were the parameters, the values of 

which varied with vegetation type, and ln( ) denotes natural logarithms. Given a map 
showing where different forest types occurred around the country, Jiang et al. were 
then able to use satellite images from the whole country, with (13.3), to estimate and 
map how net primary production of forests varied right across China.

There are many other cases where normalised difference vegetation index 
obtained from satellite data has been used to assess vegetation net primary production 
and other vegetation variables, including leaf area index, the proportion of incoming 
sunlight absorbed by the canopy, growth in stand stem wood volume and species 
richness (Gholz et al. 1991, 1999; Coops et al. 1997, 1998, 1999, 2001; Waring  
et al. 2002; Wythers et al. 2003; Le Maire et al. 2005; Pocewicz et al. 2004; Richards 
and Brack 2004; Van Tuyl et al. 2005; Volcani et al. 2005; Chirici et al. 2007; Meng 
et al. 2007).

The last example (Austin et al. 2003) concerns the use of an active satellite 
sensor, in this case the Japanese Earth Resources Satellite (JERS), which is a 
radar device, emitting radio waves and measuring their reflection from the earth 
below. Radar is sensitive to the presence of water and it is argued that this should 
aid its ability to detect, hence measure, fresh plant biomass. In this example, it 
was found that the level of radar reflection correlated reasonably well with both 
the stand above-ground live tree biomass and the biomass of coarse woody 
debris (woody material fallen from trees or in dead, standing trees) measured on 
the ground in a set of plots in open eucalypt forest in southern New South Wales, 
Australia. It was concluded that this form of remote sensing had some potential 
for the estimation of forest stand biomass. Coops (2002) has discussed some of 
the problems involved with the use of radar in assessing forest biomass. There 
are numerous other examples of the estimation of forest biomass using satellite 
imagery (Mallinis et al. 2004; Magnusson and Fransson 2005; Hall et al. 2006; 
Labrecque et al. 2006; Suganuma et al. 2006; Meng et al. 2007).

Satellite imagery has also been used to map different forest types (Moisen 
and Edwards 1999; Frescino et al. 2001; Lu 2005; Moisen and Frescino 2002), 
to determine the density of forest canopies (Behn et al. 2001; Baynes 2004) to 
determine the age structure of forests (Drezet and Quegan 2007), to identify 
forest suffering decline (Wang et al. 2007a), as an aid in predicting forest growth 
over large regions (Nightingale et al. 2008a, b; Smith et al. 2008) and as an aid 
in forest inventory (Köhl and Kushwaha 1994; Moisen and Edwards 1999; 
McRoberts et al. 2006).
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Appendix A
Glossary

Accuracy
The difference between a measurement or estimate of something and its true value.

Allometry
The relationship between part of an organism and its whole.

Basal area
Cross-sectional area at breast height of a tree stem. See also stand basal area.

Basic density
The oven-dry weight of wood per unit green volume.

Bias
The difference between the average of a set of repeated measurements or estimates 
of something and its true value.

Bioenergy
Biomass used to make energy, usually by conversion to ethanol or burning to gen-
erate electricity.

Biomass
The weight of a living organism. It may include the water in the organism, when it 
is referred to as fresh biomass. Often, the tissue is dried and its oven-dry biomass 
is considered.

Biomass expansion factor
The ratio between the biomass of some part of a tree and the volume of the stem 
of the tree. It can also be the ratio between the stand biomass of a tree part and the 
stand stem volume.

Breast height
A height of 1.3 m (or 1.4 m in some countries and 4¢6’’ in the USA) above ground 
from the base of a tree. If the tree is growing on sloping ground, it is measured 
from the highest ground-level at the base of the tree.

Canopy
The foliage and branches of a forest.
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Confidence interval
The range, evaluated with known probability, within which the true mean of a 
population lies, when the mean has been estimated from a sample from the popu-
lation. It is derived from the confidence limit.

Confidence limit
A mathematical statistical measure to determine, with a known probability, the 
limits within which the true mean of a population lies, when the mean has been 
estimated from a sample from the population.

Correlation
Two variables, measured on each of a set of objects, are said to be correlated when 
the value of one tends to change systematically with the value of the other.

Covariate
A variable which has some degree of correlation with some other variable of interest.

Crown
The foliage and branches of a tree.

Current annual increment
The present growth rate of a stand at any particular age. It is often abbreviated as 
CAI. Also known as periodic annual increment (PAI).

Dendrometer
An instrument to measure tree stem diameter.

Digital
Forms of measurement where all the information obtained is as either one of two 
‘digits’ only. The two digits might be recorded as a zero or a one, as the presence 
or absence of something and so on. These digits can then constitute a code to 
describe something, a code which computers are particularly efficient at interpret-
ing. The digits are quite distinct and so are unlikely to be misinterpreted, unlike 
analogue measurements, which are continuously variable and so are more subject 
to misinterpretation.

Dominant height
Average height of a prescribed number per unit area of the tallest or largest diam-
eter trees in a stand (see also top height and predominant height).

Ecosystem
An assemblage of plants and animals living together at a site.

Empirical
Based on experiments or observations, rather than on theory.

Environment
The other living or inanimate things amongst which a living organism grows and 
reproduces.
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Even-aged
All the trees in a stand regenerated naturally (in native forest) or were planted (in 
plantations) at or about the same time. Generally there would be less than one year 
difference in age between any of the trees in the stand. (c.f. uneven-aged).

Forest
Vegetation dominated by plants with woody stems which reach a mature height in 
excess of a few metres.

Forest management
Activities undertaken in a forest to achieve the provision of the goods and services 
which are desired from it.

Forestry
The use and management of forests to provide goods and services to people.

Functional form
The variables included, and the way they are arranged algebraically, in a mathematical 
function. These determine the shape(s) the function may adopt.

Geographic information system
A computer system to store spatial data and draw maps. They allow mapping of 
physical features of the landscape and areal mapping of characteristics of interest 
which may be overlaid onto a single map as desired.

Global positioning system
A satellite-based system, deployed and operated by the United States government, 
which allows the user to determine where they are on earth. Anyone may purchase a 
hand-held, relatively inexpensive electronic device which receives satellite signals and 
determines their latitude and longitude and their altitude above sea-level at any 
instant.

Hardwood
Tree species which are flowering plants, in which the seeds develop enclosed in an 
ovary (cf. softwood).

Height
The height of a tree is the vertical distance from ground level to the highest green 
point on the tree.

Hypsometer
An instrument which is based on geometric or trigonometric principles for measuring 
tree height.

Inventory
Measurement or estimation of characteristics of a large forested area.

Laser
An acronym for Light Amplification by Stimulated Emission of Radiation. Laser 
light involves an intense, narrow beam of light of a single colour, which can be 
directed very precisely.
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Leaf area index
The area of the leaves of a forest canopy, expressed per unit area of the ground they 
cover. Leaf area is defined as the area of the shadow which the leaves would cast if 
laid flat and lit vertically from above.

Management
See Forest management.

Mathematical statistics
A branch of mathematics concerned with methods to study, condense and make 
generalisations about information observed in natural systems.

Mean
The average of the values in a set of data.

Mean annual increment
The average rate of production (of wood, biomass, basal area, etc.) to any particular 
age of a stand. It is often abbreviated as MAI.

Median
The value in a set of data which has an equal number of values above and below it.

Merchantable volume
The volume of part of a tree stem which can be sold to convert to wood products 
by processes such as saw-milling or paper pulp manufacture.

Mode
The most common value in a data set.

Native forest
Forest which has regenerated following a disturbance (such as fire, storm or logging 
by man) and has been allowed to develop more or less as would happen naturally 
without intervention by man.

Nutrient
Any one of 15 chemical elements which are essential for plants and which play a 
wide variety of roles in their metabolism. They are available to land plants mainly 
dissolved in water in the soil and are taken up by the roots. The nutrient elements 
required in largest amounts by plants are nitrogen, potassium, magnesium, phos-
phorus, calcium and sulphur.

Oven-dry
Term to describe tissue after it has been dried (usually at 60−80°C) in an oven until 
its weight becomes constant.

Parameter
A variable in an equation which takes a particular value for a particular set of measured 
variables, the relationship amongst which the equation is being used to define.

Periodic annual increment
See current annual increment.
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Photosynthesis
The process of chemical conversion by plants of carbon dioxide, taken into their leaves 
from the air, to sugars which are then used to provide energy to the plant for other meta-
bolic processes. Light absorbed by the leaves from the sun provides the energy required 
in this process. Oxygen is released from the leaves as part of the process.

Plantation
A forest created by man, where seeds or seedlings have been planted, usually at a 
regular spacing.

Point sampling
A method of measuring certain stand characteristics from a single point within the stand.

Population
A clearly defined set of things of interest.

Population statistic
A measure used to summarise a characteristic of a population.

Precision
The variation in a set of repeated measurements or estimates of something.

Predominant height
Average height of a prescribed number per unit area of the tallest trees in a stand 
(see also dominant height).

Pulplog
A small log, cut from a tree stem, of a size appropriate for chipping to be used for 
making paper.

Quadratic mean diameter
The diameter of the tree of average basal area in a stand.

Rainforest
Forest which occurs in areas with high rainfall. In the tropics, rainforests contain a 
large number of species of tall, broad-leaved, evergreen trees which form a con-
tinuous canopy. In temperate zones, rainforests also contain many tree species, but 
are distinguished from tropical rainforests by having dominant individual species 
(adapted from the Merriam-Webster Collegiate Dictionary, 10th edition).

Remote sensing
Measurement methods relying on equipment which measures or detects objects at 
some distance from the equipment.

Sample
A set of sampling units selected from a population. They will be measured and 
the results used to attempt to make inferences about the properties of the whole 
population.
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Sampling unit
A clearly defined part of, or individual in, a population, which might be included 
as one member of a sample drawn from the population.

Sawlog
A log cut from a tree stem and large enough to be sawn into one or more of the 
many types of sawn wood used for building and many other purposes.

Silviculture
The tending of trees in forests to achieve some desired objectives of management.

Site
A more or less homogeneous area of land, across which site productive capacity 
is more or less constant.

Site index
A measure of site productive capacity, defined as the top height or predominant 
height of a stand at a prescribed age.

Site productive capacity
The total stand biomass produced, up to any particular stage of development, of a 
forest growing on a particular site, when it uses fully the resources necessary for 
tree growth which are available from the site.

Softwood
Tree species which do not have flowers and in which the seeds develop without the 
protection of an ovary. Often these ‘naked’ seeds are protected by the scales of a 
cone (cf. hardwood).

Stand
A more or less homogeneous group of trees in a forest in which an observer might 
stand and look about him or her.

Stand basal area
Stem cross-sectional area at breast height, summed over all the trees in a stand and 
expressed per unit ground area.

Stocking density
The number of tree stems per unit area in a stand.

Stratum
A subdivision of a population containing sampling units which have characteris-
tics in common.

Taper function
A mathematical function which predicts the diameter of the stem of an individual 
tree at any distance along its stem.

Timber
Wood cut from tree stems into sizes appropriate for its final use.
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Top height
Average height of a prescribed number per unit area of the largest diameter trees in 
a stand (see also dominant height).

Tree
A woody plant with a distinct stem or stems and with a mature height of several 
metres.

Understorey
A layer of vegetation growing beneath the main canopy of a forest.

Unven-aged
The trees in a forest stand are of a wide range of ages. (c.f. even-aged).

Variance
A measure of the amount of variation in a set of measurements. It is a concept 
derived from mathematical statistics and has a formal mathematical definition as 
discussed in the text.

Volume function
A mathematical function which allows estimation of the volume of the stem, or 
parts of the stem, of an individual tree from simple measurements, which can be 
taken from the ground, such as diameter at breast height over bark and tree total 
height.

Wood
A strong material forming the greater part of the stem, branches and woody roots 
of trees. It consists mainly of dead tissue.

Wood density
See Basic density.

Woodland
Open forests in which the tree crowns cover 20–50% of the land area.
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Conversion Factors

Abbreviations used commonly are shown in parentheses

Metric-Imperial Conversion Factors

1 centimetre (cm) = 0.3940 inches (in)
1 metre (m) = 3.2808 feet (ft) = 1.094 yards (yd)
1 hectare (ha) = 2.471 acres (a)
1 kilogram (kg) = 2.205 pounds (lb)
1 tonne (t) = 0.9842 tons
1 kilometre (km) = 0.6214 miles
1 litre = 0.2120 gallons (Br) = 0.2642 gallons (USA)
1 millilitre (ml) = 0.0352 fluid ounces (fl oz)

Conversions Within the Metric System

1 cm = 10 millimetre (mm)
1 m = 100 cm = 1,000 mm
1 km = 1,000 m
1 ha = 10,000 m2

1 t = 1,000 kg
1 litre = 1,000 cm3 = 1,000 ml

Conversions Within the Imperial System

1 ft = 12 in
1 yd = 3 ft
1 chain = 100 links = 22 yd
1 furlong = 10 chains
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1 mile = 8 furlongs = 1,760 yd = 5,280 ft
1 acre = 10 chain2 = 4,840 yd2

1 lb = 16 ounces (oz)
1 ton = 2,240 lb
1 gallon = 4 quarts = 8 pints
1 super foot = 1/12 ft3

1 cord = 128 ft3

1 cunit = 100 ft3
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The Greek Alphabet

Uppercase Lowercase Letter

A a Alpha

B b Beta

G g Gamma

▵D d Delta

E e Epsilon

Z z Zeta
H h Eta
Q θ Theta
I i Iota
K k Kappa
L l Lambda
M m Mu
N n Nu
X x Xi
O o Omicron
P p Pi
R r Rho
S s Sigma
T t Tau
U u Upsilon
F f Phi
C c Chi
Y y Psi
W w Omega
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Basic Trigonometry

 The Right-Angled Triangle

Consider the right angled triangle below, with sides of length a, b and c and containing 
an angle x, as shown.

a

x

c

b

By Pythagoras’ theorem c2 = a2 + b2

By definition, for the angle x
sin(x) = length opposite side/length hypotenuse = a/c
cos(x) = length adjacent side/length hypotenuse = b/c
tan(x) = length opposite side/length adjacent side = a/b

Any Triangle

Consider the triangle below with sides of length a, b and c and containing an angle 
x, as shown.

a
x

c

b

For any such triangle, the cosine rule states that

a2 = b2 + c2−2bc cos(x)
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Its area (A) is given by A = bc[sin(x)]/2

Some Useful Properties of Trigonometric Functions

tan(p) = sin(p)/cos(p)
sin(−p) = −sin(p)
cos(−p) = cos(p)
sin(p/2−p) = cos(p), where p is in radians (p/2 radians = 90°)
cos(p/2−p) = sin(p)
sin2(p) + cos2(p) = 1
sin(p + q) = cos(p)sin(q) + sin(p)cos(q)
cos(p + q) = cos(p)cos(q) − sin(p)sin(q)
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A
Abies 

balsamea, 53
cilicica, 40–42

Acacia
decurrens, 53
melanoxylon, 53

Accuracy, 5–7, 10, 14, 18, 20, 21, 25,  
26, 30, 50, 131, 134, 136

of the survey, 131
Acer saccharum, 136
Africa, 2, 139
African juniper. See Juniperus procera
Airborne remote sensing. See Remote  

sensing
Aleppo pine. See Pinus, halepensis
Allometry, 54
America. See United States of America
Angle count sampling. See Point sampling
Angle gauge sampling. See Point sampling
Asia, 2
Australia, 2, 13, 27, 28, 56, 59, 62, 78, 81, 83, 

84, 87, 94, 140, 141, 147–149, 151

B
Bacteria, 51
Balsam fir—see Abies balsamea
Bark, 13, 15, 24, 25, 28–43, 47–49, 54, 55, 57, 

66, 68, 69, 72, 73, 76, 80, 81, 94, 101, 
102, 107, 109, 110, 123, 138

gauge, 15
thickness, 15, 29, 30, 138

Basal area, 66–74, 79, 81, 82, 86, 88, 101, 
122, 150

factor, 70, 72–74, 82, 122
prism, 72
stand, 66–72, 79, 81, 82, 88, 150
wedge, 72

Basic density. See Wood density
Beer-Lambert law, 139
Belgium, 85
Bias, 5, 7–10, 12, 13, 24, 26, 28, 29, 32, 35, 

74, 122, 123, 136
Bioenergy, 11, 47, 88
Biomass, 11, 23, 24, 36, 47–52, 54–63, 65, 66, 

75, 76, 82, 83
expansion factors, 60–61, 82, 83
functions, 54, 58–60, 62, 63, 85, 86, 145
stand, 66, 75, 76, 82–85, 151

Bitterlich sampling. See Point sampling
Blackbutt. See Eucalyptus, pilularis
Blackwood. See Acacia, melanoxylon
Bootstrapping, 111, 112
Boreal regions, 63, 83
Branches, 2, 12, 15, 17, 23, 24, 29, 30, 43, 

47–51, 54, 58, 59, 61, 87, 123, 
135–139, 147

Brutian pine. See Pinus, brutia
Bursera simaruba, 35
Buttress, 12–14
Butt swell, 27, 28, 31, 40, 41

C
CAI. See Current annual increment
Calculus, 44, 45, 87
Caliper, 14, 28
Callitris 

glauca, 53
spp., 53

Cameras. See Remote  
sensing-photography

Canada, 37, 51, 54, 61, 136
Canopy, 49, 88, 135–141, 143, 145, 147, 151

bulk density, 141
gap fraction, 139–141

Carbon, 3, 47, 52, 53, 58, 150
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Carbon dioxide, 3, 47, 52
Cedar of Lebanon. See Cedrus libani
Cedrus libani, 40–42
Cells, 51, 62
Centroid sampling, 30–32, 80, 81
China, 150, 151
Chlorophyll, 148
Cilicica fir. See Abies, cilicica
Climate, 62, 75, 77, 107, 117

change, 52, 62
global warming, 3, 47, 52
greenhouse effect, 3, 47

Closing error. See Surveying
CO

2
. See Carbon dioxide

Coarse roots, 24, 51, 63, 84
Compass, 118, 125, 128, 131
Competition, 75
Cone, 26, 28, 29, 40
Confidence, 8, 57, 86, 93, 94, 96, 97,  

99–101, 103, 104, 106, 108, 110–113, 
116, 124

interval, 96, 97, 103, 106, 110, 111, 116, 124
limit, 93–94, 96, 97, 99–101, 108, 110, 

112, 113, 116
Cores, 51, 52

soil, 51
stem, 62

Corymbia maculata, 53
Costa Rica, 62
Covariates, 101–109, 111, 112, 117, 119, 120, 

124, 143
Crown, 12, 17, 24, 27, 30, 31, 48, 49, 60, 62, 

136–140, 144, 145, 147–150
Cruising, 120
Current annual increment, 86–89
Czech Republic, 143

D
Dahurian larch. See Larix gmelinii
Decay, 23, 38, 39, 149
Deciduous forest, 143
Defects, 15, 23, 24, 29, 38–39,  

43, 44, 86, 87, 149
DEMON instrument, 140
Dendrochronology, 62
Dendrometry. See Optical dendrometry
Density, 12, 23, 24, 50, 56–59, 62, 66, 67, 

73–76, 86, 121, 141, 151
canopy bulk, 141
stand, 75
stocking, 62, 66, 67, 73–76, 86, 88, 121
wood, 23, 24, 38, 50

Diameter, 6, 7, 11–15, 23–45, 47, 49–52, 
54–60, 62, 63, 65–69, 71–81, 85, 94, 

95, 101–105, 107, 109, 110, 123, 124, 
136, 142, 143, 145, 147

Disease, 12, 140, 144, 145, 149
Dominant height, 66, 75–79, 81
Douglas fir. See Pseudotsuga menziesii
Downy oak. See Quercus, pubescens

E
Edge plots

mirage technique, 123
walk through technique, 123

Ellipse, 14
Engineering, 12, 56
Eucalypts. See Eucalyptus and Corymbia
Eucalyptus 

cladocalyx, 59
grandis, 78, 79, 86, 87, 139
marginata, 141
nitens, 140
obliqua, 53
pilularis, 27, 28, 53
populnea, 84
regnans, 35
saligna, 38
spp., 53
viminalis, 35

European beech. See Fagus sylvatica
Even-aged forest, 77–79, 81, 86, 89
Exocarpus cupressiformis, 53

F
Fagus sylvatica, 62, 85
Fine root area index, 85
Fine roots, 7, 8, 24, 51, 52, 63, 84, 85,  

142, 143
Finland, 63
Fir. See Abies
Fire, 12, 67, 88, 122, 134, 141
Firewood, 2, 47
Fish-eye lens. See Wide-angle lens
Flooded gum. See Eucalyptus, grandis
Flute. See Buttress
Foliage, 48, 49, 62, 63, 136, 141

specific leaf area, 49
specific leaf weight, 49

Fungi, 38, 51

G
Gamma rays (γ-rays), 149
Geographic information system (GIS), 117, 

118, 125
Gironnierra subaequalis, 35
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GIS. See Geographic information system
Global positioning system (GPS), 118, 125, 

128, 131, 133–134
Global warming. See Climate
GPS. See Global positioning system
γ-rays. See Gamma rays
Greenhouse effect. See Climate
Ground penetrating radar, 141–143
Growth, 3, 12, 14, 23, 36, 47, 49, 52, 58, 62, 

66, 74–77, 79, 86–89, 142, 151
current annual increment, 86–89
mean annual increment, 87, 88
modelling, 74

H
Hardwoods, 54–57, 83, 84, 88, 136, 138, 140, 

144, 150
Heartwood, 62
Height, 5, 11, 12, 14, 15, 17–21,  

25, 27–42–45
dominant, 66, 75–79, 81
predominant, 76–78
top, 76–79

Hemispherical lens. See Wide-angle lens
Honduran Caribbean pine. See Pinus, caribea 

var. hondurensis
Huber’s formula, 26, 28
Hypsometer, 19, 21

I
Importance sampling, 30–32
Increment. See Growth
Index age, 78, 79
India, 150
Insects, 12, 140, 144, 145, 148
Inventory, 65, 68, 91–94, 96, 97, 99–102, 104, 

105, 112, 113, 115–124, 134, 143, 145, 
147, 151

Ireland, 62
Israel, 145
Italy, 50

J
Jackknife, 112
Japan, 138, 150
Japanese oak. See Quercus, serrata
Jarrah. See Eucalyptus, marginata
Juniperus procera, 35

K
Kenya, 38

L
LAI. See Leaf area index
LAI-2000 instrument, 139–141
Larch. See Larix
Larix gmelinii, 63
Lasers, 6, 7, 19, 20, 24, 25, 30, 118, 125, 126, 

136–138, 144, 146–149
lidar, 136, 146, 147

Leaf area index, 82, 85, 137,  
139–141, 151

Leaves. See Foliage
Lenses. See Wide-angle lens
Lidar. See Lasers
Light, 6, 18, 19, 49, 67, 72, 75, 88, 126, 

136–141, 144, 146–150
Loblolly pine. See Pinus, taeda
Logging, 67, 88, 117, 121

M
MAI. See Mean annual increment
Manna gum. See Eucalyptus, viminalis
Mean annual increment, 87, 88
Measures of central tendency, 93
Median, 93
Merchantable volume, 33, 36, 38, 81
Mexican weeping pine. See Pinus patula
Minirhizotrons, 51
Mirage technique, 123
Mode, 93
Modelling, 74
Mountain ash—see Eucalyptus, regnans
Mountain beech. See Nothofagus  

solandri
Mountain pine. See Pinus mugo

N
Native forest, 61, 63, 66, 67, 91, 117, 143, 146
NDVI. See Normalised difference vegetation 

index
Neiloid, 27, 28, 40, 42
Net primary production (NPP), 150, 151
New Zealand, 35, 62
Newton’s formula, 26, 28, 29, 41
Normalised difference vegetation index 

(NDVI), 150, 151
North America, 2, 54, 55
Northern hemisphere, 56, 57, 83, 144
Norway, 57, 62, 63
Norway spruce. See Picea, abies
Nothofagus solandri, 62
NPP. See Net primary production
Nutrients. See Nutrition
Nutrition, 7, 51, 61, 75, 82, 85, 121
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O
Oak. See Quercus
Optical dendrometry, 30–32, 72
Organic matter, 51

P
Paper, 2, 23, 38, 47, 88, 106, 125, 129
Paraboloid, 26–28, 31, 32, 40, 42
Pedunculate oak. See Quercus, robur
Photography. See Remote sensing
Photosynthesis, 3, 47–49, 58,  

87, 148, 150
Physiology, 77, 142
Picea 

abies, 53, 57, 58, 62, 63
glauca, 35
sitchensis, 25, 62, 146, 150

Pinus 
brutia, 40–42
caribea var. hondurensis, 37
cembra, 137
elliottii, 37
halepensis, 145
mugo, 137
patula, 39–41, 43
radiata, 53, 140, 148
resinosa, 136
strobus, 51, 61
sylvestris, 53, 63
taeda, 35, 37, 39–42, 53, 136, 142

Plantations, 11, 27, 37–41, 47, 59, 62, 66, 67, 
78, 86, 88, 91, 107, 115, 117, 121, 131, 
136, 139–142, 145, 148–150

Plotless sampling. See Point sampling
Plots, 66–68, 71–74, 76, 77, 80–83, 85, 94, 95, 

105, 109, 110, 117–123, 127, 130, 131, 
136, 138, 142, 145, 150, 151

Point sampling, 67–74, 81, 82, 117, 118,  
121, 122

Poplar. See Populus
Poplar box. See Eucalyptus, populnea
Populations, 91–97, 99–113, 116–120,  

122, 124
Populus, 53, 83
Potassium, 149
Precision, 5, 8–10, 25, 26, 32, 80, 81, 85,  

86, 94, 96, 112, 118, 122, 124, 125,  
128, 134

Predominant height, 76–78
Prisms, 72
Probability, 99–107, 111, 112, 117, 119, 120
Productive capacity. See Site productive 

capacity

Pseudotsuga menziesii, 35, 37, 57, 58
Pulp wood, 38, 41, 43  

Q
Quadratic paraboloid, 26–28, 31, 32, 40
Quercus, 50, 138, 143

alba, 57, 58
petraea, 143
pubescens, 50
robur, 143
serrata, 138

R
Radar. See Remote sensing
Radiata pine. See Pinus, radiata
Rainforest, 13, 67, 89, 107, 144
Red pine. See Pinus, resinosa
Regression analysis, 34, 54, 109, 124
Relascope, 30
Relaskop. See Relascope
Remote sensing, 25, 82, 102, 134, 136, 141, 

145, 146, 150, 151
aerial photography, 144–146
airborne, 143–149
canopy, 135–143, 145, 147, 151
ground penetrating radar, 141–143
LAI, 139–141
leaf area, 137, 139–141, 151
lidar, 136, 146, 147
NDVI, 150
photography, 140, 141, 144–146
radar, 136, 141–143, 151
roots, 141–143
satellites, 149–151
soil, 141–143, 149
spectrometry, 148–149
wide-angle lens, 137, 139–141

Resin, 62
Roots, 2, 7, 8, 24, 47, 48, 50–53, 56, 58, 59, 

61–63, 82–85, 87, 141–143
coarse roots, 24, 51, 63, 84
cores, 51, 52
fine roots, 7, 8, 24, 51–53, 63, 84–85,  

142, 143
ground penetrating radar, 141–143
minirhizotrons, 51–52
turnover, 51, 52

S
Sampling, 30–32, 48, 50, 67–74, 80–82, 91, 

92, 94, 96, 99–113
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centroid, 30–32, 80, 81
efficiency, 99, 103, 109
importance, 30–32, 80, 81
model-based, 104, 108–112, 117,  

119, 120
point, 67–74, 80–82, 117–123
probability proportional to prediction, 101, 

103–106, 112, 119
probability proportional to size, 101–104, 

107, 112, 117, 119, 120
simple random, 96, 99, 100, 103, 104, 

107–112, 119, 120
stratified random, 106–108, 112, 117,  

119, 120
systematic, 120, 122

Sapwood, 62, 63
Satellites, 4, 102, 117, 120, 124, 133–135, 

143, 146–151
Sawlogs, 41, 43, 45
Sawmills, 23, 24
Scots pine. See Pinus, sylvestris
Sectional volume method, 26–27 
Sessile oak. See Quercus, petraea
Shining gum. See Eucalyptus, nitens
Siberia, 63, 91, 92
Silviculture, 75
Site index, 78, 79, 86
Site productive capacity, 17, 66, 75–80, 86, 

143, 149
Sitka spruce. See Picea, sitchensis
Slash pine. See Pinus, elliottii
Softwoods, 54–57, 83, 84, 88
Soil, 3, 7, 8, 48, 50–52, 56, 61, 63, 75, 77,  

85, 107, 112, 115, 117, 121, 122, 
141–143, 149

cores, 51
ground penetrating radar, 141–143
magnetisation, 143
spectrometry, 148, 149

Southern hemisphere, 57
Specific, 26, 28, 34, 36, 49, 63, 79, 85, 100, 

105, 108, 112
leaf area, 49
leaf weight, 49

Spectrometry. See Remote sensing
Spruce. See Picea
Sri Lanka, 37
Stand density, 75
Stem, 1–3, 5, 7, 11–15, 17–20, 23–46

cores, 51, 52
defects, 43, 44
shape, 24, 27–29, 32, 39–42
taper, 33, 36, 37

Stocking density, 62, 66, 67, 73–76, 86, 121

Stone pine. See Pinus, cembra
Storms, 67, 88, 140, 146
Stratification, 107, 117
Succession, 67, 79, 88, 89
Sugar gum. See Eucalyptus, cladocalyx
Sugar maple. See Acer, saccharum
Sunlight, 3, 49, 67, 139–141, 151
Survey closing error. See Surveying
Surveying, 118, 125, 133

accuracy of the survey, 131
closing error, 130, 131

Sweden, 6
Sydney blue gum. See Eucalyptus, saligna

T
Tanzania, 39, 41
Taper, 11, 27–30, 32–34, 36–46, 80,  

81, 124
function, 27–30, 32–46, 80, 81, 124

Temperate regions, 57
Termites, 38
Theodolite, 19, 118, 125, 128, 131
Thorium, 149
Timber, 2, 11, 24, 27, 47, 65,  

88, 115, 117, 120
Timber cruising, 120
Top height, 76–79
Tropical regions, 12, 26, 56, 57, 144
Tsuga heterophylla, 146
Turkey, 40
Turnover rates. See Roots

U
Uneven-aged forest, 67, 79, 80, 88, 89
United Kingdom, 150
United States. See United States of America
United States of America (USA), 37, 39, 40, 

51, 54, 88, 136, 140–142, 146
Uranium, 149
USA. See United States of America

V
Variable radius plot sampling. See Point sampling
Variance, 8, 93–95, 100–101, 108, 110–112, 

118, 119, 124
Volume, 3, 5, 7, 8, 11, 23–40, 42, 44–46

centroid sampling, 30–32, 80, 81
function, 29, 33–40, 46, 60, 82, 124
Huber’s formula, 26, 28
importance sampling, 30–32
merchantable, 33, 36, 38–39, 80, 81
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Newton’s formula, 26, 28, 29
sectional method, 26–27
Smalian’s formula, 26, 28, 29
xylometry, 24

W
Walk through technique, 123
Water, 3, 7, 24, 48–51, 56, 61, 62, 75, 82, 85, 

87, 115, 122, 141, 151
Wedge. See Prisms
White oak. See Quercus, alba
White pine. See Pinus, strobus
Wide-angle lens, 137, 139–141

Wind, 9, 12, 17–19, 37, 39, 49, 56, 146
Wood, 1, 2, 5, 11, 12, 15, 17, 23–25, 27–33, 

35, 37, 38, 41, 43, 47, 48, 51, 56–59, 
61, 62, 65, 74, 75, 79–81, 86–89, 91, 
94, 95, 97, 100–107, 109–111, 
115–117, 124, 135, 143, 151

density, 23, 24, 50
heartwood, 62
sapwood, 62, 63

Woodland, 55, 56, 83–85

X
Xylometry, 24
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On page 45 in Chapter 6, Equation (6.13) should read as:

 V
LU 

= (p/40,000) {0.599D1.864 / H0.896} {(H–L)2.220– (H–U)2.220} / 2.220 (6.13) 

On page 82 in Chapter 8, Equation (8.10) should read as

 V=βΣ
i=1...n

[40,000Vi/(pD
i
2)] (8.10) 

On page 108 in Chapter 10, Equation (10.9) should read as:

  V
M
 = Σh=1...H

 W(h)2 {1− f(h)} {Σi=1...n(h)
[y(h,i) − y

m
(h)]2}/{[(n(h) −1]n(h)} (10.9)

The original online version for this book can be found at 
http://dx.doi.org/10.1007/978-3-540-95966-3
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